pyspark.ml.regression.
FMRegressor
Factorization Machines learning algorithm for regression.
solver Supports:
gd (normal mini-batch gradient descent)
adamW (default)
New in version 3.0.0.
Examples
>>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.regression import FMRegressor >>> df = spark.createDataFrame([ ... (2.0, Vectors.dense(2.0)), ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> >>> fm = FMRegressor(factorSize=2) >>> fm.setSeed(16) FMRegressor... >>> model = fm.fit(df) >>> model.getMaxIter() 100 >>> test0 = spark.createDataFrame([ ... (Vectors.dense(-2.0),), ... (Vectors.dense(0.5),), ... (Vectors.dense(1.0),), ... (Vectors.dense(4.0),)], ["features"]) >>> model.transform(test0).show(10, False) +--------+-------------------+ |features|prediction | +--------+-------------------+ |[-2.0] |-1.9989237712341565| |[0.5] |0.4956682219523814 | |[1.0] |0.994586620589689 | |[4.0] |3.9880970124135344 | +--------+-------------------+ ... >>> model.intercept -0.0032501766849261557 >>> model.linear DenseVector([0.9978]) >>> model.factors DenseMatrix(1, 2, [0.0173, 0.0021], 1) >>> model_path = temp_path + "/fm_model" >>> model.save(model_path) >>> model2 = FMRegressionModel.load(model_path) >>> model2.intercept -0.0032501766849261557 >>> model2.linear DenseVector([0.9978]) >>> model2.factors DenseMatrix(1, 2, [0.0173, 0.0021], 1) >>> model.transform(test0).take(1) == model2.transform(test0).take(1) True
Methods
clear(param)
clear
Clears a param from the param map if it has been explicitly set.
copy([extra])
copy
Creates a copy of this instance with the same uid and some extra params.
explainParam(param)
explainParam
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams()
explainParams
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])
extractParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
fit(dataset[, params])
fit
Fits a model to the input dataset with optional parameters.
fitMultiple(dataset, paramMaps)
fitMultiple
Fits a model to the input dataset for each param map in paramMaps.
getFactorSize()
getFactorSize
Gets the value of factorSize or its default value.
getFeaturesCol()
getFeaturesCol
Gets the value of featuresCol or its default value.
getFitIntercept()
getFitIntercept
Gets the value of fitIntercept or its default value.
getFitLinear()
getFitLinear
Gets the value of fitLinear or its default value.
getInitStd()
getInitStd
Gets the value of initStd or its default value.
getLabelCol()
getLabelCol
Gets the value of labelCol or its default value.
getMaxIter()
getMaxIter
Gets the value of maxIter or its default value.
getMiniBatchFraction()
getMiniBatchFraction
Gets the value of miniBatchFraction or its default value.
getOrDefault(param)
getOrDefault
Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)
getParam
Gets a param by its name.
getPredictionCol()
getPredictionCol
Gets the value of predictionCol or its default value.
getRegParam()
getRegParam
Gets the value of regParam or its default value.
getSeed()
getSeed
Gets the value of seed or its default value.
getSolver()
getSolver
Gets the value of solver or its default value.
getStepSize()
getStepSize
Gets the value of stepSize or its default value.
getTol()
getTol
Gets the value of tol or its default value.
getWeightCol()
getWeightCol
Gets the value of weightCol or its default value.
hasDefault(param)
hasDefault
Checks whether a param has a default value.
hasParam(paramName)
hasParam
Tests whether this instance contains a param with a given (string) name.
isDefined(param)
isDefined
Checks whether a param is explicitly set by user or has a default value.
isSet(param)
isSet
Checks whether a param is explicitly set by user.
load(path)
load
Reads an ML instance from the input path, a shortcut of read().load(path).
read()
read
Returns an MLReader instance for this class.
save(path)
save
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)
set
Sets a parameter in the embedded param map.
setFactorSize(value)
setFactorSize
Sets the value of factorSize.
factorSize
setFeaturesCol(value)
setFeaturesCol
Sets the value of featuresCol.
featuresCol
setFitIntercept(value)
setFitIntercept
Sets the value of fitIntercept.
fitIntercept
setFitLinear(value)
setFitLinear
Sets the value of fitLinear.
fitLinear
setInitStd(value)
setInitStd
Sets the value of initStd.
initStd
setLabelCol(value)
setLabelCol
Sets the value of labelCol.
labelCol
setMaxIter(value)
setMaxIter
Sets the value of maxIter.
maxIter
setMiniBatchFraction(value)
setMiniBatchFraction
Sets the value of miniBatchFraction.
miniBatchFraction
setParams(self, \*[, featuresCol, labelCol, …])
setParams
Sets Params for FMRegressor.
setPredictionCol(value)
setPredictionCol
Sets the value of predictionCol.
predictionCol
setRegParam(value)
setRegParam
Sets the value of regParam.
regParam
setSeed(value)
setSeed
Sets the value of seed.
seed
setSolver(value)
setSolver
Sets the value of solver.
solver
setStepSize(value)
setStepSize
Sets the value of stepSize.
stepSize
setTol(value)
setTol
Sets the value of tol.
tol
write()
write
Returns an MLWriter instance for this ML instance.
Attributes
params
Returns all params ordered by name.
weightCol
Methods Documentation
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Extra parameters to copy to the new instance
JavaParams
Copy of this instance
extra param values
merged param map
New in version 1.3.0.
pyspark.sql.DataFrame
input dataset.
an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Transformer
fitted model(s)
New in version 2.3.0.
collections.abc.Sequence
A Sequence of param maps.
_FitMultipleIterator
A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Attributes Documentation
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
dir()
Param