pyspark.ml.regression.
LinearRegressionModel
Model fitted by LinearRegression.
LinearRegression
New in version 1.4.0.
Methods
clear(param)
clear
Clears a param from the param map if it has been explicitly set.
copy([extra])
copy
Creates a copy of this instance with the same uid and some extra params.
evaluate(dataset)
evaluate
Evaluates the model on a test dataset.
explainParam(param)
explainParam
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams()
explainParams
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])
extractParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getAggregationDepth()
getAggregationDepth
Gets the value of aggregationDepth or its default value.
getElasticNetParam()
getElasticNetParam
Gets the value of elasticNetParam or its default value.
getEpsilon()
getEpsilon
Gets the value of epsilon or its default value.
getFeaturesCol()
getFeaturesCol
Gets the value of featuresCol or its default value.
getFitIntercept()
getFitIntercept
Gets the value of fitIntercept or its default value.
getLabelCol()
getLabelCol
Gets the value of labelCol or its default value.
getLoss()
getLoss
Gets the value of loss or its default value.
getMaxBlockSizeInMB()
getMaxBlockSizeInMB
Gets the value of maxBlockSizeInMB or its default value.
getMaxIter()
getMaxIter
Gets the value of maxIter or its default value.
getOrDefault(param)
getOrDefault
Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)
getParam
Gets a param by its name.
getPredictionCol()
getPredictionCol
Gets the value of predictionCol or its default value.
getRegParam()
getRegParam
Gets the value of regParam or its default value.
getSolver()
getSolver
Gets the value of solver or its default value.
getStandardization()
getStandardization
Gets the value of standardization or its default value.
getTol()
getTol
Gets the value of tol or its default value.
getWeightCol()
getWeightCol
Gets the value of weightCol or its default value.
hasDefault(param)
hasDefault
Checks whether a param has a default value.
hasParam(paramName)
hasParam
Tests whether this instance contains a param with a given (string) name.
isDefined(param)
isDefined
Checks whether a param is explicitly set by user or has a default value.
isSet(param)
isSet
Checks whether a param is explicitly set by user.
load(path)
load
Reads an ML instance from the input path, a shortcut of read().load(path).
predict(value)
predict
Predict label for the given features.
read()
read
Returns an MLReader instance for this class.
save(path)
save
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)
set
Sets a parameter in the embedded param map.
setFeaturesCol(value)
setFeaturesCol
Sets the value of featuresCol.
featuresCol
setPredictionCol(value)
setPredictionCol
Sets the value of predictionCol.
predictionCol
transform(dataset[, params])
transform
Transforms the input dataset with optional parameters.
write()
write
Returns an GeneralMLWriter instance for this ML instance.
Attributes
aggregationDepth
coefficients
Model coefficients.
elasticNetParam
epsilon
fitIntercept
hasSummary
Indicates whether a training summary exists for this model instance.
intercept
Model intercept.
labelCol
loss
maxBlockSizeInMB
maxIter
numFeatures
Returns the number of features the model was trained on.
params
Returns all params ordered by name.
regParam
scale
The value by which \(\|y - X'w\|\) is scaled down when loss is “huber”, otherwise 1.0.
solver
standardization
summary
Gets summary (residuals, MSE, r-squared ) of model on training set.
tol
weightCol
Methods Documentation
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Extra parameters to copy to the new instance
JavaParams
Copy of this instance
New in version 2.0.0.
pyspark.sql.DataFrame
Test dataset to evaluate model on, where dataset is an instance of pyspark.sql.DataFrame
extra param values
merged param map
New in version 2.3.0.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 3.0.0.
New in version 1.3.0.
input dataset
an optional param map that overrides embedded params.
transformed dataset
Attributes Documentation
New in version 2.1.0.
Returns the number of features the model was trained on. If unknown, returns -1
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
dir()
Param
Gets summary (residuals, MSE, r-squared ) of model on training set. An exception is thrown if trainingSummary is None.