Series.
reindex_like
Return a Series with matching indices as other object.
Conform the object to the same index on all axes. Places NA/NaN in locations having no value in the previous index.
Its row and column indices are used to define the new indices of this object.
Series with changed indices on each axis.
See also
DataFrame.set_index
Set row labels.
DataFrame.reset_index
Remove row labels or move them to new columns.
DataFrame.reindex
Change to new indices or expand indices.
Notes
Same as calling .reindex(index=other.index, ...).
.reindex(index=other.index, ...)
Examples
>>> s1 = ps.Series([24.3, 31.0, 22.0, 35.0], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D'), ... name="temp_celsius") >>> s1 2014-02-12 24.3 2014-02-13 31.0 2014-02-14 22.0 2014-02-15 35.0 Name: temp_celsius, dtype: float64
>>> s2 = ps.Series(["low", "low", "medium"], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15']), ... name="winspeed") >>> s2 2014-02-12 low 2014-02-13 low 2014-02-15 medium Name: winspeed, dtype: object
>>> s2.reindex_like(s1).sort_index() 2014-02-12 low 2014-02-13 low 2014-02-14 None 2014-02-15 medium Name: winspeed, dtype: object