
CUFFT LIBRARY USER'S GUIDE

DU-06707-001_v5.5 | July 2013

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | ii

TABLE OF CONTENTS

Chapter 1. Introduction...1
Chapter 2. Using the CUFFT API..3

2.1. Accessing CUFFT.. 4
2.2. Fourier Transform Setup...4
2.3. Fourier Transform Types... 5
2.4. Data Layout..6

2.4.1. FFTW Compatibility Mode..7
2.5. Multidimensional transforms.. 7
2.6. Advanced Data Layout... 8
2.7. Streamed CUFFT Transforms.. 10
2.8. Thread Safety.. 10
2.9. Accuracy and Performance.. 10

Chapter 3. CUFFT API Reference... 12
3.1. Return value cufftResult... 12
3.2. CUFFT Basic Plans...12

3.2.1. Function cufftPlan1d().. 12
3.2.2. Function cufftPlan2d().. 13
3.2.3. Function cufftPlan3d().. 14
3.2.4. Function cufftPlanMany()... 14

3.3. CUFFT Extensible Plans.. 16
3.3.1. Function cufftCreate().. 16
3.3.2. Function cufftMakePlan1d().. 16
3.3.3. Function cufftMakePlan2d().. 17
3.3.4. Function cufftMakePlan3d().. 18
3.3.5. Function cufftMakePlanMany()...18

3.4. CUFFT Estimated Size of Work Area... 20
3.4.1. Function cufftEstimate1d()...20
3.4.2. Function cufftEstimate2d()...21
3.4.3. Function cufftEstimate3d()...21
3.4.4. Function cufftEstimateMany()..22

3.5. CUFFT Refined Estimated Size of Work Area... 23
3.5.1. Function cufftGetSize1d().. 23
3.5.2. Function cufftGetSize2d().. 24
3.5.3. Function cufftGetSize3d().. 25
3.5.4. Function cufftGetSizeMany()... 25

3.6. Function cufftGetSize().. 27
3.7. CUFFT Caller Allocated Work Area Support...27

3.7.1. Function cufftSetAutoAllocation()...27
3.7.2. Function cufftSetWorkArea()... 28

3.8. Function cufftDestroy()...28

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | iii

3.9. CUFFT Execution.. 29
3.9.1. Functions cufftExecC2C() and cufftExecZ2Z()...29
3.9.2. Functions cufftExecR2C() and cufftExecD2Z()...29
3.9.3. Functions cufftExecC2R() and cufftExecZ2D()...30

3.10. Function cufftSetStream().. 31
3.11. Function cufftGetVersion()... 31
3.12. Function cufftSetCompatibilityMode()..32
3.13. Parameter cufftCompatibility..32
3.14. CUFFT Types.. 32

3.14.1. Parameter cufftType... 33
3.14.2. Parameters for Transform Direction... 33
3.14.3. Other CUFFT Types...33

3.14.3.1. cufftHandle...33
3.14.3.2. cufftReal.. 33
3.14.3.3. cufftDoubleReal..33
3.14.3.4. cufftComplex...33
3.14.3.5. cufftDoubleComplex.. 34

Chapter 4. CUFFT Code Examples.. 35
4.1. 1D Complex-to-Complex Transforms... 35
4.2. 1D Real-to-Complex Transforms...36
4.3. 2D Complex-to-Real Transforms...37
4.4. 3D Complex-to-Complex Transforms... 37
4.5. 2D Advanced Data Layout Use.. 38

Chapter 5. FFTW Conversion Guide.. 40
Chapter 6. FFTW Interface to CUFFT.. 41

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | iv

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 1

Chapter 1.
INTRODUCTION

This document describes CUFFT, the NVIDIA® CUDA™ Fast Fourier Transform (FFT)
product. It consists of two separate libraries: CUFFT and CUFFTW. The CUFFT library
is designed to provide high performance on NVIDIA GPUs. The CUFFTW library is
provided as porting tool to enable users of FFTW to start using NVIDIA GPUs with a
minimum amount of effort.

The FFT is a divide-and-conquer algorithm for efficiently computing discrete Fourier
transforms of complex or real-valued data sets. It is one of the most important and
widely used numerical algorithms in computational physics and general signal
processing. The CUFFT library provides a simple interface for computing FFTs on an
NVIDIA GPU, which allows users to quickly leverage the floating-point power and
parallelism of the GPU in a highly optimized and tested FFT library.

The CUFFT product supports a wide range of FFT inputs and options efficiently on
NVIDIA GPUs. This version of the CUFFT library supports the following features:

‣ Algorithms highly optimized for input sizes that can be written in the form

‣ An algorithm for every input data size
‣ Complex and real-valued input and output:

‣ C2C - Complex input to complex output
‣ R2C - Real input to complex output
‣ C2R - Symmetric complex input to real output

‣ 1D, 2D and 3D transforms
‣ Execution of multiple 1D, 2D and 3D transforms simultaneously
‣ Single-precision (32-bit floating point) and double-precision (64-bit floating point)
‣ In-place and out-of-place transforms
‣ FFTW compatible data layouts
‣ Arbitrary intra- and inter-dimension element strides (strided layout)
‣ Streamed execution, enabling asynchronous computation and data movement
‣ Transform sizes up to 128 million elements in single precision and up to 64 million

elements in double precision in any dimension, limited by the available GPU
memory

Introduction

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 2

‣ Thread-safe API that can be called from multiple independent host threads

The CUFFTW library provides the FFTW3 API to facilitate porting of existing FFTW
applications.

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 3

Chapter 2.
USING THE CUFFT API

This chapter provides a general overview of the CUFFT library API. For more complete
information on specific functions, see CUFFT API Reference. Users are encouraged to
read this chapter before continuing with more detailed descriptions.

The Discrete Fourier transform (DFT) maps a complex-valued vector (time domain)
into its frequency domain representation given by:

where is a complex-valued vector of the same size. This is known as a forward DFT.
If the sign on the exponent of e is changed to be positive, the transform is an inverse
transform. Depending on , different algorithms are deployed for the best performance.

The CUFFT API is modeled after FFTW, which is one of the most popular and efficient
CPU-based FFT libraries. CUFFT provides a simple configuration mechanism called
a plan that pre-configures internal building blocks such that the execution time of the
transform is as fast as possible for the given configuration and the particular GPU
hardware selected. Then, when the execution function is called, the actual transform
takes place following the plan of execution. The advantage of this approach is that once
the user creates a plan, the library retains whatever state is needed to execute the plan
multiple times without recalculation of the configuration. This model works well for
CUFFT because different kinds of FFTs require different thread configurations and GPU
resources, and the plan interface provides a simple way of reusing configurations.

Computing a number BATCH of one-dimensional DFTs of size NX using CUFFT will
typically look like this:

#define NX 256
#define BATCH 10
...
{
 cufftHandle plan;
 cufftComplex *data;
 ...
 cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*BATCH);
 cufftPlan1d(&plan, NX, CUFFT_C2C, BATCH);
 ...
 cufftExecC2C(plan, data, data, CUFFT_FORWARD);

http://www.fftw.org

Using the CUFFT API

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 4

 cudaThreadSynchronize();
 ...
 cufftDestroy(plan);
 cudaFree(data);
}

2.1. Accessing CUFFT
The CUFFT and CUFFTW libraries are available as shared libraries. They consist of
compiled programs ready for users to incorporate into applications with the compiler
and linker. CUFFT can be downloaded from http://developer.nvidia.com/cufft. By
selecting Download CUDA Production Release users are all able to install the package
containing the CUDA Toolkit, SDK code samples and development drivers. The CUDA
Toolkit contains CUFFT and the samples include simpleCUFFT.

The Linux release for simpleCUFFT assumes that the root install directory is /usr/
local/cuda and that the locations of the products are contained there as follows.
Modify the Makefile as appropriate for your system.

Product Location and name Include file

nvcc compiler /bin/nvcc

CUFFT library {lib, lib64}/libcufft.so inc/cufft.h

CUFFTW library {lib, lib64}/libcufftw.so inc/cufftw.h

The most common case is for developers to modify an existing CUDA routine (for
example, filename.cu) to call CUFFT routines. In this case the include file cufft.h
should be inserted into filename.cu file and the library included in the link line. A
single compile and link line might appear as

‣ /usr/local/cuda/bin/nvcc [options] filename.cu … -I/usr/local/
cuda/inc -L/usr/local/cuda/lib -lcufft

Of course there will typically be many compile lines and the compiler g++ may be used
for linking so long as the library path is set correctly.

Users of the FFTW interface (see FFTW Interface to CUFFT) should include cufftw.h
and link with both CUFFT and CUFFTW libraries.

For the best performance input data should reside in device memory. Therefore
programs in the CUFFT library assume that the data is in GPU memory. For example,
if one of the execution functions is called with data in host memory, the program will
return CUFFT_EXEC_FAILED. Programs in the CUFFTW library assume that the input
data is in host memory since this library is a porting tool for users of FFTW. If the data
resides in GPU memory, the program will abort.

2.2. Fourier Transform Setup
The first step in using the CUFFT Library is to create a plan using one of the following:

http://developer.nvidia.com/cufft

Using the CUFFT API

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 5

‣ cufftPlan1D() / cufftPlan2D() / cufftPlan3D() - Create a simple plan for
a 1D/2D/3D transform respectively.

‣ cufftPlanMany() - Creates a plan supporting batched input and strided data
layouts.

Among the plan creation functions, cufftPlanMany() allows use of more complicated
data layouts and batched executions. Execution of a transform of a particular size and
type may take several stages of processing. When a plan for the transform is generated,
CUFFT derives the internal steps that need to be taken. These steps may include
multiple kernel launches, memory copies, and so on. In addition, all the intermediate
buffer allocations (on CPU/GPU memory) take place during planning. These buffers
are released when the plan is destroyed. In the worst case, the CUFFT Library allocates
space for 8*batch*n[0]*..*n[rank-1] cufftComplex or cufftDoubleComplex
elements (where batch denotes the number of transforms that will be executed in
parallel, rank is the number of dimensions of the input data (see Multidimensional
transforms) and n[] is the array of transform dimensions) for single and double-
precision transforms respectively. Depending on the configuration of the plan, less
memory may be used. In some specific cases, the temporary space allocations can be
as low as 1*batch*n[0]*..*n[rank-1] cufftComplex or cufftDoubleComplex
elements. This temporary space is allocated separately for each individual plan when it
is created (i.e., temporary space is not shared between the plans).

The next step in using the library is to call an execution function such as
cufftExecC2C() (see Parameter cufftType) which will perform the transform with the
specifications defined at planning.

One can create a CUFFT plan and perform multiple transforms on different data sets by
providing different input and output pointers. Once the plan is no longer needed, the
cufftDestroy() function should be called to release the resources allocated for the
plan.

2.3. Fourier Transform Types
Apart from the general complex-to-complex (C2C) transform, CUFFT implements
efficiently two other types: real-to-complex (R2C) and complex-to-real (C2R). In many
practical applications the input vector is real-valued. It can be easily shown that in
this case the output satisfies Hermitian symmetry (, where the star denotes
complex conjugation). The converse is also true: for complex-Hermitian input the
inverse transform will be purely real-valued. CUFFT takes advantage of this redundancy
and works only on the first half of the Hermitian vector.

Transform execution functions for single and double-precision are defined separately as:

‣ cufftExecC2C() / cufftExecZ2Z() - complex-to-complex transforms for single/
double precision.

‣ cufftExecR2C() / cufftExecD2Z() - real-to-complex forward transform for
single/double precision.

‣ cufftExecC2R() / cufftExecZ2D() - complex-to-real inverse transform for
single/double precision.

Using the CUFFT API

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 6

Each of those functions demands different input data layout (see Data Layout for
details).

2.4. Data Layout
In the CUFFT Library, data layout depends strictly on the configuration and the
transform type. In the case of general complex-to-complex transform both the input
and output data shall be a cufftComplex/cufftDoubleComplex array in single- and
double-precision modes respectively. In C2R mode an input array of
only non-redundant complex elements is required. The output array
consists of cufftReal/cufftDouble elements in this mode. Finally, R2C demands an
input array of real values and returns an array of non-
redundant complex elements.

In real-to-complex and complex-to-real transforms the size of input data and the size
of output data differ. For out-of-place transforms a separate array of appropriate size is
created. For in-place transforms the user can specify one of two supported data layouts:
native or padded. The first is used for best performance and the latter for FFTW
compatibility.

In the padded layout output signals begin at the same memory addresses as the input
data. In other words - input data for real-to-complex and output data for complex-to-real
must be padded. In the native layout no padding is required and both input and output
data is formed as arrays of adequate types and sizes.

Sizes of input/output data for all types of transforms are summarized in the table below:

FFT type input data size output data size

C2C cufftComplex cufftComplex

C2R cufftComplex cufftReal

R2C* cufftReal cufftComplex

(*total transform size is limited to (see Introduction) elements in in-place R2C single
precision native transforms)

The real-to-complex transform is implicitly a forward transform. For an in-place
real-to-complex transform where FFTW compatible output is desired, the input size

must be padded to real elements. For out-of-place transforms, input and

output strides match the logical transform size and the non-redundant size ,
respectively.

The complex-to-real transform is implicitly inverse. For in-place complex-to-real FFTs
where FFTW compatible output is selected (default padding mode, see Parameters

for Transform Direction for details), the input stride is assumed to be

Using the CUFFT API

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 7

cufftComplex elements.For out-of-place transforms, input and output strides match

the logical transform non-redundant size and size , respectively.

Starting with CUFFT version 4.1, transforms with advanced data layout are supported
through the cufftPlanMany() function. In this mode, the developer can define strides
between each element as well as between the signals in a batch (see Advanced Data
Layout).

2.4.1. FFTW Compatibility Mode
For some transform sizes, FFTW requires additional padding bytes between rows and
planes of real-to-complex (R2C) and complex-to-real (C2R) transforms of rank greater
than . (For details, please refer to the FFTW online documentation.)

One can disable FFTW-compatible layout using cufftSetCompatibilityMode().
Setting the input parameter to CUFFT_COMPATIBILITY_NATIVE disables padding
and ensures compact data layout for the input/output data for Real-to-Complex/
Complex-To-Real transforms. Disabling padding using CUFFT native mode can provide
significant speed-up especially in power-of-two sized transforms.

The FFTW compatibility modes are as follows:

CUFFT_COMPATIBILITY_NATIVE mode disables FFTW compatibility and achieves the
highest performance.

CUFFT_COMPATIBILITY_FFTW_PADDING supports FFTW data padding by inserting
extra padding between packed in-place transforms for batched transforms (default).

CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC guarantees FFTW-compatible output for
non-symmetric complex inputs for transforms with power-of-2 size. This is only useful
for artificial (that is, random) data sets as actual data will always be symmetric if it has
come from the real plane. Enabling this mode can significantly impact performance.

CUFFT_COMPATIBILITY_FFTW_ALL enables full FFTW
compatibility (both CUFFT_COMPATIBILITY_FFTW_PADDING and
CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC).

Refer to the FFTW online documentation for detailed FFTW data layout specifications.

The default mode is CUFFT_COMPATIBILITY_FFTW_PADDING

2.5. Multidimensional transforms
Multidimensional DFT transforms a -dimensional array , where
into its frequency domain array given by:

http://www.fftw.org
http://www.fftw.org

Using the CUFFT API

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 8

where , and the summation denotes the set of nested summations

CUFFT supports one-dimensional, two-dimensional and three-dimensional transforms,
which can all be called by the same cufftExec* functions (see Fourier Transform
Types).

Similar to the one-dimensional case, the frequency domain representation of real-valued
input data satisfies Hermitian symmetry, defined as: .

C2R and R2C algorithms take advantage of this fact by operating
only on half of the elements of signal array, namely on: for

.

The general rules of data alignment described in Data Layout apply to higher-
dimensional transforms. The following table summarizes input and output data sizes for
multidimensional DFTs:

Dims FFT type Input data size Output data size

C2C cufftComplex cufftComplex

1D C2R
 cufftComplex

 cufftReal

R2C cufftReal
 cufftComplex

C2C cufftComplex cufftComplex

2D C2R
 cufftComplex

cufftReal

R2C cufftReal
 cufftComplex

C2C cufftComplex cufftComplex

3D C2R
 cufftComplex

cufftReal

R2C cufftReal
cufftComplex

For example, static declaration of a three-dimensional array for the output of an out-of-
place real-to-complex transform will look like this:
cufftComplex float odata[N1][N2][N3/2+1];

2.6. Advanced Data Layout
The advanced data layout feature allows transforming only a subset of an input array, or
outputting to only a portion of a larger data structure. It can be set by calling function:
cufftResult cufftPlanMany(cufftHandle *plan, int rank, int *n, int *inembed,
 int istride, int idist, int *onembed, int ostride,

Using the CUFFT API

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 9

 int odist, cufftType type, int batch);

Passing inembed or onembed set to NULL is a special case and is equivalent to passing
n for each. This is same as the basic data layout and other advanced parameters such as
istride are ignored.

If the advanced parameters are to be used, then all of the advanced interface parameters
must be specified correctly. Advanced parameters are defined in units of the relevant
data type (cufftReal, cufftDoubleReal, cufftComplex, or cufftDoubleComplex).

Advanced layout can be perceived as an additional layer of abstraction above the access
to input/output data arrays. An element of coordinates [z][y][x] in signal number b
in the batch will be associated with the following addresses in the memory:

‣ 1D

input[b * idist + x * istride]

output[b * odist + x * ostride]
‣ 2D

input[b * idist + (x * inembed[1] + y) * istride]

output[b * odist + (x * onembed[1] + y) * ostride]
‣ 3D

input[b * idist + ((x * inembed[1] + y) * inembed[2] + z) * istride]

output[b * odist + ((x * onembed[1] + y) * onembed[2] + z) * ostride]

The istride and ostride parameters denote the distance between two successive
input and output elements in the least significant (that is, the innermost) dimension
respectively. In a 1D transform, if every input element is to be used in the transform,
istride should be set to ; if every other input element is to be used in the transform,
then istride should be set to . Similarly, in a 1D transform, if it is desired to output
final elements one after another compactly, ostride should be set to ; if spacing is
desired between the least significant dimension output data, ostride should be set to
the distance between the elements.

The inembed and onembed parameters define the number of elements in each
dimension in the input array and the output array respectively. The inembed[rank-1]
contains the number of elements in the least significant (innermost) dimension of the
input data excluding the istride elements; the number of total elements in the least
significant dimension of the input array is then istride*inembed[rank-1]. The
inembed[0] or onembed[0] corresponds to the most significant (that is, the outermost)
dimension and is effectively ignored since the idist or odist parameter provides this
information instead. Note that the size of each dimension of the transform should be less
than or equal to the inembed and onembed values for the corresponding dimension, that
is n[i] ≤ inembed[i], n[i] ≤ onembed[i], where .

The idist and odist parameters indicate the distance between the first element of
two consecutive batches in the input and output data. One can derive the total input
data size as idist*batch in units of transform elements (e.g. cufftComplex in a C2C
single-precision transform).

Using the CUFFT API

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 10

2.7. Streamed CUFFT Transforms
Every CUFFT plan may be associated with a CUDA stream. Once so associated, all
launches of the internal stages of that plan take place through the specified stream.
Streaming of CUFFT execution allows for potential overlap between transforms and
memory copies. (See the NVIDIA CUDA Programming Guide for more information on
streams.) If no stream is associated with a plan, launches take place in stream(0), the
default CUDA stream, and no overlap will be possible. Note that many plan executions
require multiple kernel launches.

2.8. Thread Safety
Starting with CUFFT version 4.1, the CUFFT Library is thread safe and its functions can
be called from multiple host threads, even with the same plan (cufftHandle). The only
requirement is that the output data memory intervals are disjoint.

2.9. Accuracy and Performance
A general DFT can be implemented as a matrix vector multiplication that requires

 operations. However, the CUFFT Library employs the Cooley-Tukey algorithm
to reduce the number of required operations to optimize the performance of particular
transform sizes. This algorithm expresses a DFT recursively in terms of smaller DFT
building blocks. The CUFFT Library implements the following DFT building blocks:
radix-2, radix-3, radix-5, and radix-7. Hence the performance of any transform size
that can be factored as (where a, b, c, and d are non-negative integers)
is optimized in the CUFFT library. There are also radix-m building blocks for other
primes, m, whose value is < 128. When the length cannot be decomposed as multiples
of powers of primes from 2 to 127, Bluestein's algorithm is used. The accuracy of the
Bluestein implementation degrades with larger sizes compared to the pure Cooley-
Tukey implementation, specifically in single-precision mode, due to the accumulation
of floating-point operation inaccuracies. The pure Cooley-Tukey implementation has
excellent accuracy, with the relative error growing proportionally to , where is
the transform size in points.

For sizes handled by the Cooley-Tukey code path, the most efficient implementation is
obtained by applying the following constraints (listed in order from the most generic to
the most specialized constraint, with each subsequent constraint providing the potential
of an additional performance improvement).

‣ Restrict the size along all dimensions to be representable as .

The CUFFT library has highly optimized kernels for transforms whose dimensions
have these prime factors.

‣ Restrict the size along each dimension to use fewer distinct prime factors.

http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Bluestein's_FFT_algorithm

Using the CUFFT API

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 11

For example, a transform of size will usually be faster than one of size even
if the latter is slightly smaller.

‣ Restrict the power-of-two factorization term of the x dimension to be a multiple of either 256
for single-precision transforms or 64 for double-precision transforms.

This further aids with memory coalescing.

‣ Restrict the x dimension of single-precision transforms to be strictly a power of two either
between 2 and 8192 for Fermi-class, Kepler-class, and more recent GPUs or between 2 and
2048 for earlier architectures.

These transforms are implemented as specialized hand-coded kernels that keep all
intermediate results in shared memory.

‣ Use native compatibility mode for in-place complex-to-real or real-to-complex transforms.

This scheme reduces the write/read of padding bytes hence helping with coalescing
of the data.

Starting with version 3.1 of the CUFFT Library, the conjugate symmetry property of
real-to-complex output data arrays and complex-to-real input data arrays is exploited
when the power-of-two factorization term of the x dimension is at least a multiple of 4.
Large 1D sizes (powers-of-two larger than 65,536), 2D, and 3D transforms benefit the
most from the performance optimizations in the implementation of real-to-complex or
complex-to-real transforms.

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 12

Chapter 3.
CUFFT API REFERENCE

This chapter specifies the behavior of the CUFFT library functions by describing their
input/output parameters, data types, and error codes. The CUFFT library is initialized
upon the first invocation of an API function, and CUFFT shuts down automatically
when all user-created FFT plans are destroyed.

3.1. Return value cufftResult
All CUFFT Library return values except for CUFFT_SUCCESS indicate that the current
API call failed and the user should reconfigure to correct the problem. The possible
return values are defined as follows:

typedef enum cufftResult_t {
 CUFFT_SUCCESS = 0, // The CUFFT operation was successful
 CUFFT_INVALID_PLAN = 1, // CUFFT was passed an invalid plan handle
 CUFFT_ALLOC_FAILED = 2, // CUFFT failed to allocate GPU or CPU memory
 CUFFT_INVALID_TYPE = 3, // No longer used
 CUFFT_INVALID_VALUE = 4, // User specified an invalid pointer or
 parameter
 CUFFT_INTERNAL_ERROR = 5, // Driver or internal CUFFT library error
 CUFFT_EXEC_FAILED = 6, // Failed to execute an FFT on the GPU
 CUFFT_SETUP_FAILED = 7, // The CUFFT library failed to initialize
 CUFFT_INVALID_SIZE = 8, // User specified an invalid transform size
 CUFFT_UNALIGNED_DATA = 9, // No longer used
 CUFFT_INVALID_DEVICE = 10, // Plan creation and execution are on different
 device
 CUFFT_NO_WORKSPACE = 11 // Workspace not initialized
} cufftResult;

Users are encouraged to check return values from CUFFT functions for errors as shown
in CUFFT Code Examples.

3.2. CUFFT Basic Plans

3.2.1. Function cufftPlan1d()
cufftResult

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 13

 cufftPlan1d(cufftHandle *plan, int nx, cufftType type, int batch)

Creates a 1D FFT plan configuration for a specified signal size and data type. The batch
input parameter tells CUFFT how many 1D transforms to configure.
Input

plan Pointer to a cufftHandle object

nx The transform size (e.g. 256 for a 256-point FFT)

type The transform data type (e.g., CUFFT_C2C for single
precision complex to complex)

batch Number of transforms of size nx

Output

plan Contains a CUFFT 1D plan handle value

Return Values

CUFFT_SUCCESS CUFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE The nx or batch parameter is not a supported size.

3.2.2. Function cufftPlan2d()
cufftResult
 cufftPlan2d(cufftHandle *plan, int nx, int ny, cufftType type)

Creates a 2D FFT plan configuration according to specified signal sizes and data type.
Input

plan Pointer to a cufftHandle object

nx The transform size in the x dimension (number of rows)

ny The transform size in the y dimension (number of columns)

type The transform data type (e.g., CUFFT_C2R for single
precision complex to real)

Output

plan Contains a CUFFT 2D plan handle value

Return Values

CUFFT_SUCCESS CUFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 14

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE Either or both of the nx or ny parameters is not a supported
size.

3.2.3. Function cufftPlan3d()
cufftResult
 cufftPlan3d(cufftHandle *plan, int nx, int ny, int nz, cufftType type)

Creates a 3D FFT plan configuration according to specified signal sizes and data type.
This function is the same as cufftPlan2d() except that it takes a third size parameter
nz.
Input

plan Pointer to a cufftHandle object

nx The transform size in the x dimension

ny The transform size in the y dimension

nz The transform size in the z dimension

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

Output

plan Contains a CUFFT 3D plan handle value

Return Values

CUFFT_SUCCESS CUFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the nx, ny, or nz parameters is not a
supported size.

3.2.4. Function cufftPlanMany()
cufftResult
 cufftPlanMany(cufftHandle *plan, int rank, int *n, int *inembed,
 int istride, int idist, int *onembed, int ostride,
 int odist, cufftType type, int batch);

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 15

Creates a FFT plan configuration of dimension rank, with sizes specified in the array n.
The batch input parameter tells CUFFT how many transforms to configure. With this
function, batched plans of 1, 2, or 3 dimensions may be created.

The cufftPlanMany() API supports more complicated input and output data layouts
via the advanced data layout parameters: inembed, istride, idist, onembed,
ostride, and odist.

All arrays are assumed to be in CPU memory.
Input

plan Pointer to a cufftHandle object

rank Dimensionality of the transform (1, 2, or 3)

n Array of size rank, describing the size of each dimension

inembed Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced
data layout parameters are ignored.

istride Indicates the distance between two successive input
elements in the least significant (i.e., innermost) dimension

idist Indicates the distance between the first element of two
consecutive signals in a batch of the input data

onembed Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced
data layout parameters are ignored.

ostride Indicates the distance between two successive output
elements in the output array in the least significant (i.e.,
innermost) dimension

odist Indicates the distance between the first element of two
consecutive signals in a batch of the output data

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

batch Batch size for this transform

Output

plan Contains a CUFFT plan handle

Return Values

CUFFT_SUCCESS CUFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the parameters is not a supported size.

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 16

3.3. CUFFT Extensible Plans
This API separates handle creation from plan generation. This makes it possible to
change plan settings, which may alter the outcome of the plan generation phase, before
the plan is actually generated. The same cufftExecute calls are used to execute all plans,
whether generated with this API or with the original API.

3.3.1. Function cufftCreate()
cufftResult
 cufftCreate(cufftHandle *plan)

Creates only an opaque handle, and allocates small data structures on the host. The
cufftMakePlan*() calls actually do the plan generation. It is recommended that
cufftSet*() calls, such as cufftSetCompatibilityMode(), that may require a plan
to be broken down and re-generated, should be made after cufftCreate() and before
one of the cufftMakePlan*() calls.
Input

plan Pointer to a cufftHandle object

Output

plan Contains a CUFFT plan handle value

Return Values

CUFFT_SUCCESS CUFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE The nx parameter is not a supported size.

3.3.2. Function cufftMakePlan1d()
cufftResult
 cufftMakePlan1d(cufftHandle *plan, int nx, cufftType type, int batch)

Following a call to cufftCreate() makes a 1D FFT plan configuration for a specified
signal size and data type. The batch input parameter tells CUFFT how many 1D
transforms to configure.
Input

plan Pointer to a cufftHandle object

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 17

nx The transform size (e.g. 256 for a 256-point FFT)

type The transform data type (e.g., CUFFT_C2C for single
precision complex to complex)

batch Number of transforms of size nx

Output

plan Contains a CUFFT 1D plan handle value

Return Values

CUFFT_SUCCESS CUFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE The nx or batch parameter is not a supported size.

3.3.3. Function cufftMakePlan2d()
cufftResult
 cufftMakePlan2d(cufftHandle *plan, int nx, int ny, cufftType type)

Following a call to cufftCreate() makes a 2D FFT plan configuration according to
specified signal sizes and data type.
Input

plan Pointer to a cufftHandle object

nx The transform size in the x dimension (number of rows)

ny The transform size in the y dimension (number of columns)

type The transform data type (e.g., CUFFT_C2R for single
precision complex to real)

Output

plan Contains a CUFFT 2D plan handle value

Return Values

CUFFT_SUCCESS CUFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 18

CUFFT_INVALID_SIZE Either or both of the nx or ny parameters is not a supported
size.

3.3.4. Function cufftMakePlan3d()
cufftResult
 cufftMakePlan3d(cufftHandle *plan, int nx, int ny, int nz, cufftType type)

Following a call to cufftCreate() makes a 3D FFT plan configuration according to
specified signal sizes and data type. This function is the same as cufftPlan2d() except
that it takes a third size parameter nz.
Input

plan Pointer to a cufftHandle object

nx The transform size in the x dimension

ny The transform size in the y dimension

nz The transform size in the z dimension

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

Output

plan Contains a CUFFT 3D plan handle value

Return Values

CUFFT_SUCCESS CUFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the nx, ny, or nz parameters is not a
supported size.

3.3.5. Function cufftMakePlanMany()
cufftResult
 cufftMakePlanMany(cufftHandle *plan, int rank, int *n, int *inembed,
 int istride, int idist, int *onembed, int ostride,
 int odist, cufftType type, int batch);

Following a call to cufftCreate() makes a FFT plan configuration of dimension rank,
with sizes specified in the array n. The batch input parameter tells CUFFT how many
transforms to configure. With this function, batched plans of 1, 2, or 3 dimensions may
be created.

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 19

The cufftPlanMany() API supports more complicated input and output data layouts
via the advanced data layout parameters: inembed, istride, idist, onembed,
ostride, and odist.

All arrays are assumed to be in CPU memory.
Input

plan Pointer to a cufftHandle object

rank Dimensionality of the transform (1, 2, or 3)

n Array of size rank, describing the size of each dimension

inembed Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced
data layout parameters are ignored.

istride Indicates the distance between two successive input
elements in the least significant (i.e., innermost) dimension

idist Indicates the distance between the first element of two
consecutive signals in a batch of the input data

onembed Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced
data layout parameters are ignored.

ostride Indicates the distance between two successive output
elements in the output array in the least significant (i.e.,
innermost) dimension

odist Indicates the distance between the first element of two
consecutive signals in a batch of the output data

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

batch Batch size for this transform

Output

plan Contains a CUFFT plan handle

Return Values

CUFFT_SUCCESS CUFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the parameters is not a supported size.

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 20

3.4. CUFFT Estimated Size of Work Area
During plan execution, CUFFT requires a work area for temporary storage of
intermediate results. The cufftEstimate*() calls return an estimate for the size of the
work area required, given the specified parameters, and assuming default plan settings.
Some problem sizes require much more storage than others. In particular powers of 2
are very efficient in terms of temporary storage. Large prime numbers, however, use
different algorithms and may need up to the eight times that of a similarly sized power
of 2. These routines return estimated workSize values which may still be smaller than
the actual values needed especially for values of n that are not multiples of powers of 2,
3, 5 and 7. More refined values are given by the cufftGetSize*() routines, but these
values may still be conservative.

3.4.1. Function cufftEstimate1d()
cufftResult
 cufftEstimate1d(int nx, cufftType type, int batch, size_t *workSize)

During plan execution, CUFFT requires a work area for temporary storage of
intermediate results. This call returns an estimate for the size of the work area required,
given the specified parameters, and assuming default plan settings. Note that changing
some plan settings, such as compatibility mode, may alter the size required for the work
area.
Input

nx The transform size (e.g. 256 for a 256-point FFT)

type The transform data type (e.g., CUFFT_C2C for single
precision complex to complex)

batch Number of transforms of size nx

*workSize Pointer to the size of the work space

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS CUFFT successfully returned the size of the work space.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE The nx parameter is not a supported size.

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 21

3.4.2. Function cufftEstimate2d()
cufftResult
 cufftEstimate2d(int nx, int ny, cufftType type, size_t *workSize)

During plan execution, CUFFT requires a work area for temporary storage of
intermediate results. This call returns an estimate for the size of the work area required,
given the specified parameters, and assuming default plan settings. Note that changing
some plan settings, such as compatibility mode, may alter the size required for the work
area.
Input

nx The transform size in the x dimension (number of rows)

ny The transform size in the y dimension (number of columns)

type The transform data type (e.g., CUFFT_C2R for single
precision complex to real)

*workSize Pointer to the size of the work space

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS CUFFT successfully returned the size of the work space.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE Either or both of the nx or ny parameters is not a supported
size.

3.4.3. Function cufftEstimate3d()
cufftResult
 cufftEstimate3d(int nx, int ny, int nz, cufftType type, size_t *workSize)

During plan execution, CUFFT requires a work area for temporary storage of
intermediate results. This call returns an estimate for the size of the work area required,
given the specified parameters, and assuming default plan settings. Note that changing
some plan settings, such as compatibility mode, may alter the size required for the work
area.
Input

nx The transform size in the x dimension

ny The transform size in the y dimension

nz The transform size in the z dimension

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 22

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

*workSize Pointer to the size of the work space

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS CUFFT successfully returned the size of the work space.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the nx, ny, or nz parameters is not a
supported size.

3.4.4. Function cufftEstimateMany()
cufftResult
 cufftEstimateMany(*plan, int rank, int *n, int *inembed,
 int istride, int idist, int *onembed, int ostride,
 int odist, cufftType type, int batch, size_t *workSize);

During plan execution, CUFFT requires a work area for temporary storage of
intermediate results. This call returns an estimate for the size of the work area required,
given the specified parameters, and assuming default plan settings. Note that changing
some plan settings, such as compatibility mode, may alter the size required for the work
area.

The cufftPlanMany() API supports more complicated input and output data layouts
via the advanced data layout parameters: inembed, istride, idist, onembed,
ostride, and odist.

All arrays are assumed to be in CPU memory.
Input

rank Dimensionality of the transform (1, 2, or 3)

n Array of size rank, describing the size of each dimension

inembed Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced
data layout parameters are ignored.

istride Indicates the distance between two successive input
elements in the least significant (i.e., innermost) dimension

idist Indicates the distance between the first element of two
consecutive signals in a batch of the input data

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 23

onembed Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced
data layout parameters are ignored.

ostride Indicates the distance between two successive output
elements in the output array in the least significant (i.e.,
innermost) dimension

odist Indicates the distance between the first element of two
consecutive signals in a batch of the output data

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

batch Batch size for this transform

*workSize Pointer to the size of the work space

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS CUFFT successfully returned the size of the work space.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the parameters is not a supported size.

3.5. CUFFT Refined Estimated Size of Work Area
The cufftGetSize*() routines give a more accurate estimate of the work area size
required for a plan than the cufftEstimate*() routines as they take into account any
plan settings that may have been made. As discussed in the section CUFFT Estimated
Size of Work Area, the workSize value returned may be conservative especially for
values of n that are not multiples of powers of 2, 3, 5 and 7.

3.5.1. Function cufftGetSize1d()
cufftResult
 cufftGetSize1d(cufftHandle *plan, int nx, cufftType type, int batch, size_t
 *workSize)

This call gives a more accurate estimate of the work area size required for a plan than
cufftEstimate1d(), given the specified parameters, and taking into account any plan
settings that may have been made.
Input

plan Pointer to a cufftHandle object

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 24

nx The transform size (e.g. 256 for a 256-point FFT)

type The transform data type (e.g., CUFFT_C2C for single
precision complex to complex)

batch Number of transforms of size nx

*workSize Pointer to the size of the work space

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS CUFFT successfully returned the size of the work space.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE The nx parameter is not a supported size.

3.5.2. Function cufftGetSize2d()
cufftResult
 cufftGetSize2d(cufftHandle *plan, int nx, int ny, cufftType type, size_t
 *workSize)

This call gives a more accurate estimate of the work area size required for a plan than
cufftEstimate2d(), given the specified parameters, and taking into account any plan
settings that may have been made.
Input

plan Pointer to a cufftHandle object

nx The transform size in the x dimension (number of rows)

ny The transform size in the y dimension (number of columns)

type The transform data type (e.g., CUFFT_C2R for single
precision complex to real)

*workSize Pointer to the size of the work space

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS CUFFT successfully returned the size of the work space.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 25

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE Either or both of the nx or ny parameters is not a supported
size.

3.5.3. Function cufftGetSize3d()
cufftResult
 cufftGetSize3d(cufftHandle *plan, int nx, int ny, int nz, cufftType type,
 size_t *workSize)

This call gives a more accurate estimate of the work area size required for a plan than
cufftEstimate3d(), given the specified parameters, and taking into account any plan
settings that may have been made.
Input

plan Pointer to a cufftHandle object

nx The transform size in the x dimension

ny The transform size in the y dimension

nz The transform size in the z dimension

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

*workSize Pointer to the size of the work space

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS CUFFT successfully returned the size of the work space.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the nx, ny, or nz parameters is not a
supported size.

3.5.4. Function cufftGetSizeMany()
cufftResult
 cufftGetSizeMany(cufftHandle *plan, int rank, int *n, int *inembed,
 int istride, int idist, int *onembed, int ostride,

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 26

 int odist, cufftType type, int batch, size_t *workSize);

This call gives a more accurate estimate of the work area size required for a plan than
cufftEstimateSizeMany(), given the specified parameters, and taking into account
any plan settings that may have been made.

The batch input parameter tells CUFFT how many transforms to configure. With this
function, batched plans of 1, 2, or 3 dimensions may be created.

The cufftPlanMany() API supports more complicated input and output data layouts
via the advanced data layout parameters: inembed, istride, idist, onembed,
ostride, and odist.

All arrays are assumed to be in CPU memory.
Input

plan Pointer to a cufftHandle object

rank Dimensionality of the transform (1, 2, or 3)

n Array of size rank, describing the size of each dimension

inembed Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced
data layout parameters are ignored.

istride Indicates the distance between two successive input
elements in the least significant (i.e., innermost) dimension

idist Indicates the distance between the first element of two
consecutive signals in a batch of the input data

onembed Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced
data layout parameters are ignored.

ostride Indicates the distance between two successive output
elements in the output array in the least significant (i.e.,
innermost) dimension

odist Indicates the distance between the first element of two
consecutive signals in a batch of the output data

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

batch Batch size for this transform

Output

plan Contains a CUFFT plan handle

Return Values

CUFFT_SUCCESS CUFFT successfully returned the size of the work space.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 27

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the parameters is not a supported size.

3.6. Function cufftGetSize()
cufftResult
 cufftGetSize(cufftHandle *plan, size_t *workSize);

Once plan generation has been done, either with the original API or the extensible API,
this call returns the actual size of the work area required to support the plan. Callers
who choose to manage work area allocation within their application must use this call
after plan generation, and after any cufftSet*() calls subsequent to plan generation, if
those calls might alter the required work space size.
Input

plan Pointer to a cufftHandle object

*workSize Pointer to the size of the work space

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS CUFFT successfully returned the size of the work space.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

3.7. CUFFT Caller Allocated Work Area Support

3.7.1. Function cufftSetAutoAllocation()
cufftResult
 cufftSetAutoAllocation(cufftHandle *plan, bool autoAllocate);

cufftSetAutoAllocation() indicates that the caller intends to allocate and manage
work areas for plans that have been generated. CUFFT default behavior is to allocate
the work area at plan generation time. If cufftSetAutoAllocation() has been called
with autoAllocate set to "false" prior to one of the cufftMakePlan*() calls, CUFFT
does not allocate the work area. This is the preferred sequence for callers wishing to
manage work area allocation.
Input

plan Pointer to a cufftHandle object

autoAllocate Boolean to indicate whether to allocate work area.

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 28

Return Values

CUFFT_SUCCESS CUFFT successfully allows user to manage work area.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

3.7.2. Function cufftSetWorkArea()
cufftResult
 cufftSetWorkArea(cufftHandle *plan, void *workArea);

cufftSetWorkArea() overrides the work area pointer associated with a plan.
If the work area was auto-allocated, CUFFT frees the auto-allocated space. The
cufftExecute*() calls assume that the work area pointer is valid and that it points to
a contiguous region in device memory that does not overlap with any other work area. If
this is not the case, results are indeterminate.
Input

plan Pointer to a cufftHandle object

workArea Pointer to workArea

Output

workArea Pointer to workArea

Return Values

CUFFT_SUCCESS CUFFT successfully allows user to override workArea pointer.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

3.8. Function cufftDestroy()
cufftResult
 cufftDestroy(cufftHandle plan)

Frees all GPU resources associated with a CUFFT plan and destroys the internal plan
data structure. This function should be called once a plan is no longer needed, to avoid
wasting GPU memory.
Input

plan The cufftHandle object of the plan to be destroyed.

Return Values

CUFFT_SUCCESS CUFFT successfully destroyed the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 29

3.9. CUFFT Execution

3.9.1. Functions cufftExecC2C() and cufftExecZ2Z()
cufftResult
 cufftExecC2C(cufftHandle *plan, cufftComplex *idata,
 cufftComplex *odata, int direction);
cufftResult
 cufftExecZ2Z(cufftHandle *plan, cufftDoubleComplex *idata,
 cufftDoubleComplex *odata, int direction);

cufftExecC2C() (cufftExecZ2Z()) executes a single-precision (double-precision)
complex-to-complex transform plan in the transform direction as specified by
direction parameter. CUFFT uses the GPU memory pointed to by the idata
parameter as input data. This function stores the Fourier coefficients in the odata array.
If idata and odata are the same, this method does an in-place transform.
Input

plan The cufftHandle object for the plan to be executed

idata Pointer to the complex input data (in GPU memory) to
transform

odata Pointer to the complex output data (in GPU memory)

direction The transform direction: CUFFT_FORWARD or CUFFT_INVERSE

Output

odata Contains the complex Fourier coefficients

Return Values

CUFFT_SUCCESS CUFFT successfully executed the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INVALID_VALUE At least one of the parameters idata, odata, and
direction is not valid.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_EXEC_FAILED CUFFT failed to execute the transform on the GPU.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

3.9.2. Functions cufftExecR2C() and cufftExecD2Z()
cufftResult
 cufftExecR2C(cufftHandle *plan, cufftReal *idata, cufftComplex *odata);
cufftResult
 cufftExecD2Z(cufftHandle *plan, cufftDoubleReal *idata, cufftDoubleComplex
 *odata);

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 30

cufftExecR2C() (cufftExecD2Z()) executes a single-precision (double-precision)
real-to-complex, implicitly forward, CUFFT transform plan. CUFFT uses as input
data the GPU memory pointed to by the idata parameter. This function stores the
nonredundant Fourier coefficients in the odata array. Pointers to idata and odata are
both required to be aligned to cufftComplex data type in single-precision transforms
and cufftDoubleComplex data type in double-precision transforms. If idata and
odata are the same, this method does an in-place transform. Note the data layout
differences between in-place and out-of-place transforms as described in Parameter
cufftType.
Input

plan The cufftHandle object for the plan to be executed

idata Pointer to the real input data (in GPU memory) to transform

odata Pointer to the real output data (in GPU memory)

Output

odata Contains the complex Fourier coefficients

Return Values

CUFFT_SUCCESS CUFFT successfully executed the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INVALID_VALUE At least one of the parameters idata and odata is not valid.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_EXEC_FAILED CUFFT failed to execute the transform on the GPU.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

3.9.3. Functions cufftExecC2R() and cufftExecZ2D()
cufftResult
 cufftExecC2R(cufftHandle plan, cufftComplex *idata, cufftReal *odata);
cufftResult
 cufftExecZ2D(cufftHandle plan, cufftComplex *idata, cufftReal *odata);

cufftExecC2R() (cufftExecZ2D()) executes a single-precision (double-precision)
complex-to-real, implicitly inverse, CUFFT transform plan. CUFFT uses as input data
the GPU memory pointed to by the idata parameter. The input array holds only the
nonredundant complex Fourier coefficients. This function stores the real output values
in the odata array. and pointers are both required to be aligned to cufftComplex data
type in single-precision transforms and cufftDoubleComplex type in double-precision
transforms. If idata and odata are the same, this method does an in-place transform.
Input

plan The cufftHandle object for the plan to be executed

idata Pointer to the complex input data (in GPU memory) to
transform

odata Pointer to the complex output data (in GPU memory)

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 31

Output

odata Contains the complex Fourier coefficients

Return Values

CUFFT_SUCCESS CUFFT successfully executed the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INVALID_VALUE At least one of the parameters idata and odata is not valid.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_EXEC_FAILED CUFFT failed to execute the transform on the GPU.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

3.10. Function cufftSetStream()
cufftResult
 cufftSetStream(cufftHandle plan, cudaStream_t stream);

Associates a CUDA stream with a CUFFT plan. All kernel launches made during plan
execution are now done through the associated stream, enabling overlap with activity in
other streams (e.g. data copying). The association remains until the plan is destroyed or
the stream is changed with another call to cufftSetStream().
Input

plan The cufftHandle object to associate with the stream

stream A valid CUDA stream created with cudaStreamCreate(); 0
for the default stream

Status Returned

CUFFT_SUCCESS The stream was associated with the plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

3.11. Function cufftGetVersion()
cufftResult
 cufftGetVersion(int *version);

Returns the version number of CUFFT.
Input

input Pointer to the version number

Output

output Pointer to the version number

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 32

Return Values

CUFFT_SUCCESS CUFFT successfully returned the version number.

3.12. Function cufftSetCompatibilityMode()
cufftResult
 cufftSetCompatibilityMode(cufftHandle plan, cufftCompatibility mode);

Configures the layout of CUFFT output in FFTW-compatible modes. When desired,
FFTW compatibility can be configured for padding only, for asymmetric complex inputs
only, or for full compatibility. If the cufftSetCompatibilityMode() API fails, later
cufftExecute*() calls are not guaranteed to work.
Input

plan The cufftHandle object to associate with the stream

mode The cufftCompatibility option to be used:

CUFFT_COMPATIBILITY_NATIVE
CUFFT_COMPATIBILITY_FFTW_PADDING (default)
CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC
CUFFT_COMPATIBILITY_FFTW_ALL

Return Values

CUFFT_SUCCESS CUFFT successfully set compatibiltiy mode.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_SETUP_FAILED The CUFFT library failed to initialize.

3.13. Parameter cufftCompatibility
CUFFT Library defines FFTW compatible data layouts using the following enumeration
of values. See FFTW Compatibility Mode for more details.

typedef enum cufftCompatibility_t {
 // Compact data in native format (highest performance)
 CUFFT_COMPATIBILITY_NATIVE = 0,

 // FFTW-compatible alignment (the default value)
 CUFFT_COMPATIBILITY_FFTW_PADDING = 1,

 // Waives the C2R symmetry requirement input
 CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC = 2,

 CUFFT_COMPATIBILITY_FFTW_ALL = CUFFT_COMPATIBILITY_FFTW_PADDING |
 CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC
} cufftCompatibility;

3.14. CUFFT Types

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 33

3.14.1. Parameter cufftType
The CUFFT library supports complex- and real-data transforms. The cufftType data
type is an enumeration of the types of transform data supported by CUFFT.

typedef enum cufftType_t {
 CUFFT_R2C = 0x2a, // Real to complex (interleaved)
 CUFFT_C2R = 0x2c, // Complex (interleaved) to real
 CUFFT_C2C = 0x29, // Complex to complex (interleaved)
 CUFFT_D2Z = 0x6a, // Double to double-complex (interleaved)
 CUFFT_Z2D = 0x6c, // Double-complex (interleaved) to double
 CUFFT_Z2Z = 0x69 // Double-complex to double-complex (interleaved)
} cufftType;

3.14.2. Parameters for Transform Direction
The CUFFT library defines forward and inverse Fast Fourier Transforms according to the
sign of the complex exponential term.

 #define CUFFTFORWARD -1
 #define CUFFTINVERSE 1

CUFFT performs un-normalized FFTs; that is, performing a forward FFT on an input
data set followed by an inverse FFT on the resulting set yields data that is equal to the
input, scaled by the number of elements. Scaling either transform by the reciprocal of the
size of the data set is left for the user to perform as seen fit.

3.14.3. Other CUFFT Types

3.14.3.1. cufftHandle
A handle type used to store and access CUFFT plans. The user receives a handle after
creating a CUFFT plan and uses this handle to execute the plan.
typedef unsigned int cufftHandle;

3.14.3.2. cufftReal
A single-precision, floating-point real data type.
typedef float cufftReal;

3.14.3.3. cufftDoubleReal
A double-precision, floating-point real data type.
typedef double cufftDoubleReal;

3.14.3.4. cufftComplex
A single-precision, floating-point complex data type that consists of interleaved real and
imaginary components.
typedef cuComplex cufftComplex;

CUFFT API Reference

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 34

3.14.3.5. cufftDoubleComplex
A double-precision, floating-point complex data type that consists of interleaved real
and imaginary components.
typedef cuDoubleComplex cufftDoubleComplex;

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 35

Chapter 4.
CUFFT CODE EXAMPLES

This chapter provides six simple examples of complex and real 1D, 2D, and 3D
transforms that use CUFFT to perform forward and inverse FFTs.

4.1. 1D Complex-to-Complex Transforms
In this example a one-dimensional complex-to-complex transform is applied to the input
data. Afterwards an inverse transform is performed on the computed frequency domain
representation.

#define NX 256
#define BATCH 10

cufftHandle plan;
cufftComplex *data;
cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*BATCH);
if (cudaGetLastError() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to allocate\n");
 return;
}

if (cufftPlan1d(&plan, NX, CUFFT_C2C, BATCH) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: Plan creation failed");
 return;
}

...

/* Note:
 * Identical pointers to input and output arrays implies in-place
 transformation
 */

if (cufftExecC2C(plan, data, data, CUFFT_FORWARD) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: ExecC2C Forward failed");
 return;
}

if (cufftExecC2C(plan, data, data, CUFFT_INVERSE) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: ExecC2C Inverse failed");
 return;
}

CUFFT Code Examples

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 36

/*
 * Divide by number of elements in data set to get back original data
 */

...

if (cudaThreadSynchronize() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to synchronize\n");
 return;
}

...

cufftDestroy(plan);
cudaFree(data);

4.2. 1D Real-to-Complex Transforms
In this example a one-dimensional real-to-complex transform is applied to the input
data.

#define NX 256
#define BATCH 10

cufftHandle plan;
cufftComplex *data;
cudaMalloc((void**)&data, sizeof(cufftComplex)*(NX/2+1)*BATCH);
if (cudaGetLastError() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to allocate\n");
 return;
}

if (cufftPlan1d(&plan, NX, CUFFT_R2C, BATCH) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: Plan creation failed");
 return;
}

...

/* Use the CUFFT plan to transform the signal in place. */
if (cufftExecR2C(plan, (cufftReal*)data, data) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: ExecC2C Forward failed");
 return;
}

if (cudaThreadSynchronize() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to synchronize\n");
 return;
}

...

cufftDestroy(plan);
cudaFree(data);

CUFFT Code Examples

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 37

4.3. 2D Complex-to-Real Transforms
In this example a two-dimensional complex-to-real transform is applied to the input
data arranged according to the requirements of the native compatibility mode.

#define NX 256
#define NY 128
#define NRANK 2

cufftHandle plan;
cufftComplex *data;
int n[NRANK] = {NX, NY};

cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*(NY/2+1));
if (cudaGetLastError() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to allocate\n");
 return;
}

/* Create a 2D FFT plan. */
if (cufftPlanMany(&plan, NRANK, n,
 NULL, 1, 0,
 NULL, 1, 0,
 CUFFT_C2R,BATCH) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT Error: Unable to create plan\n");
 return;
}

if (cufftSetCompatibilityMode(plan, CUFFT_COMPATIBILITY_NATIVE)!= CUFFT_SUCCESS)
{
 fprintf(stderr, "CUFFT Error: Unable to set compatibility mode to native\n");
 return;
}

...

if (cufftExecC2R(plan, data, data) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT Error: Unable to execute plan\n");
 return;
}

if (cudaThreadSynchronize() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to synchronize\n");
 return;
}

...

cufftDestroy(plan);
cudaFree(data);

4.4. 3D Complex-to-Complex Transforms
In this example a three-dimensional complex-to-complex transform is applied to the
input data.

#define NX 64
#define NY 128

CUFFT Code Examples

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 38

#define NX 128
#define BATCH 10
#define NRANK 3

cufftHandle plan;
cufftComplex *data;
int n[NRANK] = {NX, NY, NZ};

cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*NY*NZ*BATCH);
if (cudaGetLastError() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to allocate\n");
 return;
}

/* Create a 3D FFT plan. */
if (cufftPlanMany(&plan, NRANK, n,
 NULL, 1, NX*NY*NZ, // *inembed, istride, idist
 NULL, 1, NX*NY*NZ, // *onembed, ostride, odist
 CUFFT_C2C, BATCH) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: Plan creation failed");
 return;
}

/* Use the CUFFT plan to transform the signal in place. */
if (cufftExecC2C(plan, data, data, CUFFT_FORWARD) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: ExecC2C Forward failed");
 return;
}

if (cudaThreadSynchronize() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to synchronize\n");
 return;
}

...

cufftDestroy(plan);
cudaFree(data);

4.5. 2D Advanced Data Layout Use
In this example a two-dimensional complex-to-complex transform is applied to the input
data arranged according to the requirements the advanced layout.

#define NX 128
#define NY 256
#define BATCH 10
#define NRANK 2

/* Advanced interface parameters, arbitrary strides */
#define ISTRIDE 2
#define OSTRIDE 1
#define IX (NX+2)
#define IY (NY+1)
#define OX (NX+3)
#define OY (NY+4)
#define IDIST (IX*IY*ISTRIDE+3)
#define ODIST (OX*OY*OSTRIDE+5)

cufftHandle plan;
cufftComplex *idata, *odata;
int isize = IDIST * BATCH;
int osize = ODIST * BATCH;

CUFFT Code Examples

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 39

int n[NRANK] = {NX, NY};
int inembed[NRANK] = {IX, IY};
int onembed[NRANK] = {OX, OY};

cudaMalloc((void **)&idata, sizeof(cufftComplex)*isize);
cudaMalloc((void **)&odata, sizeof(cufftComplex)*osize);
if (cudaGetLastError() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to allocate\n");
 return;
}

/* Create a batched 2D plan */
if (cufftPlanMany(&plan, NRANK, n,
 inembed,ISTRIDE,IDIST,
 onembed,OSTRIDE,ODIST,
 CUFFT_C2C,BATCH) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT Error: Unable to create plan\n");
 return;
}

...

/* Execute the transform out-of-place */
if (cufftExecC2C(plan, idata, odata, CUFFT_FORWARD) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT Error: Failed to execute plan\n");
 return;
}

if (cudaThreadSynchronize() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to synchronize\n");
 return;
}

...

cufftDestroy(plan);
cudaFree(idata);
cudaFree(odata);

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 40

Chapter 5.
FFTW CONVERSION GUIDE

CUFFT differs from FFTW in that FFTW has many plans and a single execute function
while CUFFT has fewer plans, but multiple execute functions. The CUFFT execute
functions determine the precision (single or double) and whether the input is complex or
real valued. The following table shows the relationship between the two interfaces.

FFTW function CUFFT function

fftw_plan_dft_1d(), fftw_plan_dft_r2c_1d(),
fftw_plan_dft_c2r_1d()

cufftPlan1d()

fftw_plan_dft_2d(), fftw_plan_dft_r2c_2d(),
fftw_plan_dft_c2r_2d()

cufftPlan2d()

fftw_plan_dft_3d(), fftw_plan_dft_r2c_3d(),
fftw_plan_dft_c2r_3d()

cufftPlan3d()

fftw_plan_dft(), fftw_plan_dft_r2c(),
fftw_plan_dft_c2r()

cufftPlanMany()

fftw_plan_many_dft(), fftw_plan_many_dft_r2c(),
fftw_plan_many_dft_c2r()

cufftPlanMany()

fftw_execute() cufftExecC2C(), cufftExecZ2Z(),
cufftExecR2C(), cufftExecD2Z(),
cufftExecC2R(), cufftExecZ2D()

fftw_destroy_plan() cufftDestroy()

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 41

Chapter 6.
FFTW INTERFACE TO CUFFT

NVIDIA provides FFTW3 interfaces to the CUFFT library. This allows applications using
FFTW to use NVIDIA GPUs with minimal modifications to program source code. To use
the interface first do the following two steps

‣ It is recommended that you replace the include file fftw3.h with cufftw.h
‣ Instead of linking with the double/single precision libraries such as fftw3/fftw3f

libraries, link with both the CUFFT and CUFFTW libraries

After an application is working using the FFTW3 interface, users may want to modify
their code to move data to and from the GPU and use the routines documented in the
FFTW Conversion Guide for the best performance.

The following tables show which components and functions of FFTW3 are supported in
CUFFT.

Section in FFTW
manual Supported Unsupported

Complex numbers fftw_complex, fftwf_complex
types

Precision double fftw3, single fftwf3 long double fftw3l, quad precision
fftw3q are not supported since
CUDA functions operate on double
and single precision floating-point
quantities

Memory Allocation fftw_malloc(), fftw_free(),
fftw_alloc_real(),
fftw_alloc_complex(),
fftwf_alloc_real(),
fftwf_alloc_complex()

Multi-threaded FFTW fftw3_threads, fftw3_omp are
not supported - note that CUFFT is
already multithreaded

Distributed-memory
FFTW with MPI

fftw3_mpi,fftw3f_mpi are not
supported

FFTW Interface to CUFFT

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 42

Note that for each of the double precision functions below there is a corresponding
single precision version with the letters fftw replaced by fftwf.

Section in FFTW
manual Supported Unsupported

Using Plans fftw_execute(),
fftw_destroy_plan(),
fftw_cleanup(),
fftw_print_plan()

fftw_cost(), fftw_flops() exist
but are not functional

Basic Interface

Complex DFTs fftw_plan_dft_1d(),
fftw_plan_dft_2d(),
fftw_plan_dft_3d(),
fftw_plan_dft()

Planner Flags Planner flags are ignored and the
same plan is returned regardless

Real-data DFTs fftw_plan_dft_r2c_1d(),
fftw_plan_dft_r2c_2d(),
fftw_plan_dft_r2c_3d(),
fftw_plan_dft_r2c(),
fftw_plan_dft_c2r_1d(),
fftw_plan_dft_c2r_2d(),
fftw_plan_dft_c2r_3d(),
fftw_plan_dft_c2r()

Read-data DFT Array
Format

Not supported

Read-to-Real Transform Not supported

Read-to-Real Transform
Kinds

Not supported

Advanced Interface

Advanced Complex DFTs fftw_plan_many_dft() with
multiple 1D, 2D, 3D transforms

fftw_plan_many_dft() with 4D or
higher transforms or a 2D or higher
batch of embedded transforms

Advanced Real-data
DFTs

fftw_plan_many_dft_r2c(),
fftw_plan_many_dft_c2r() with
multiple 1D, 2D, 3D transforms

fftw_plan_many_dft_r2c(),
fftw_plan_many_dft_c2r() with
4D or higher transforms or a 2D or
higher batch of embedded transforms

Advanced Real-to-Real
Transforms

Not supported

Guru Interface

Interleaved and split
arrays

Interleaved format Split format

Guru vector and
transform sizes

fftw_iodim struct

Guru Complex DFTs fftw_plan_guru_dft(),
fftw_plan_guru_dft_r2c(),
fftw_plan_guru_dft_c2r() with
multiple 1D, 2D, 3D transforms

fftw_plan_guru_dft(),
fftw_plan_guru_dft_r2c(),
fftw_plan_guru_dft_c2r() with

FFTW Interface to CUFFT

www.nvidia.com
CUFFT Library User's Guide DU-06707-001_v5.5 | 43

Section in FFTW
manual Supported Unsupported

4D or higher transforms or a 2D or
higher batch of transforms

Guru Real-data DFTs Not supported

Guru Real-to-real
Transforms

Not supported

64-bit Guru Interface Not supported

New-array Execute
Functions

fftw_execute_dft(),
fftw_execute_dft_r2c(),
fftw_execute_dft_c2r() with
interleaved format

Split format and real-to-real
functions

Wisdom fftw_export_wisdom_to_file(),
fftw_import_wisdom_from_file()
exist but are not functional. Other
wisdom functions do not have entry
points in the library.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2013 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Introduction
	Using the CUFFT API
	2.1. Accessing CUFFT
	2.2. Fourier Transform Setup
	2.3. Fourier Transform Types
	2.4. Data Layout
	2.4.1. FFTW Compatibility Mode

	2.5. Multidimensional transforms
	2.6. Advanced Data Layout
	2.7. Streamed CUFFT Transforms
	2.8. Thread Safety
	2.9. Accuracy and Performance

	CUFFT API Reference
	3.1. Return value cufftResult
	3.2. CUFFT Basic Plans
	3.2.1. Function cufftPlan1d()
	3.2.2. Function cufftPlan2d()
	3.2.3. Function cufftPlan3d()
	3.2.4. Function cufftPlanMany()

	3.3. CUFFT Extensible Plans
	3.3.1. Function cufftCreate()
	3.3.2. Function cufftMakePlan1d()
	3.3.3. Function cufftMakePlan2d()
	3.3.4. Function cufftMakePlan3d()
	3.3.5. Function cufftMakePlanMany()

	3.4. CUFFT Estimated Size of Work Area
	3.4.1. Function cufftEstimate1d()
	3.4.2. Function cufftEstimate2d()
	3.4.3. Function cufftEstimate3d()
	3.4.4. Function cufftEstimateMany()

	3.5. CUFFT Refined Estimated Size of Work Area
	3.5.1. Function cufftGetSize1d()
	3.5.2. Function cufftGetSize2d()
	3.5.3. Function cufftGetSize3d()
	3.5.4. Function cufftGetSizeMany()

	3.6. Function cufftGetSize()
	3.7. CUFFT Caller Allocated Work Area Support
	3.7.1. Function cufftSetAutoAllocation()
	3.7.2. Function cufftSetWorkArea()

	3.8. Function cufftDestroy()
	3.9. CUFFT Execution
	3.9.1. Functions cufftExecC2C() and cufftExecZ2Z()
	3.9.2. Functions cufftExecR2C() and cufftExecD2Z()
	3.9.3. Functions cufftExecC2R() and cufftExecZ2D()

	3.10. Function cufftSetStream()
	3.11. Function cufftGetVersion()
	3.12. Function cufftSetCompatibilityMode()
	3.13. Parameter cufftCompatibility
	3.14. CUFFT Types
	3.14.1. Parameter cufftType
	3.14.2. Parameters for Transform Direction
	3.14.3. Other CUFFT Types
	3.14.3.1. cufftHandle
	3.14.3.2. cufftReal
	3.14.3.3. cufftDoubleReal
	3.14.3.4. cufftComplex
	3.14.3.5. cufftDoubleComplex

	CUFFT Code Examples
	4.1. 1D Complex-to-Complex Transforms
	4.2. 1D Real-to-Complex Transforms
	4.3. 2D Complex-to-Real Transforms
	4.4. 3D Complex-to-Complex Transforms
	4.5. 2D Advanced Data Layout Use

	FFTW Conversion Guide
	FFTW Interface to CUFFT

