
CUPTI

DA-05679-001 _v10.0 | February 2019

User's Guide

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | ii

TABLE OF CONTENTS

Overview... iv
What's New.. iv

Chapter 1. Usage... 1
1.1. CUPTI Compatibility and Requirements...1
1.2. CUPTI Initialization... 1
1.3. CUPTI Activity API.. 1

1.3.1. SASS Source Correlation..2
1.3.2. PC Sampling.. 3
1.3.3. NVLink... 4
1.3.4. OpenACC.. 5
1.3.5. External Correlation.. 5

1.4. CUPTI Callback API... 6
1.4.1. Driver and Runtime API Callbacks.. 7
1.4.2. Resource Callbacks.. 8
1.4.3. Synchronization Callbacks..8
1.4.4. NVIDIA Tools Extension Callbacks... 8

1.5. CUPTI Event API... 10
1.5.1. Collecting Kernel Execution Events... 12
1.5.2. Sampling Events.. 13

1.6. CUPTI Metric API.. 13
1.6.1. Metrics Reference..15

1.6.1.1. Metrics for Capability 3.x... 15
1.6.1.2. Metrics for Capability 5.x... 23
1.6.1.3. Metrics for Capability 6.x... 31
1.6.1.4. Metrics for Capability 7.0... 41

1.7. CUPTI Profiling API..49
1.7.1. Multi Pass Collection.. 50
1.7.2. Range Profiling... 50

1.7.2.1. Auto Range.. 50
1.7.2.2. User Range...54

1.7.3. CUPTI Profiler Definitions.. 56
1.8. Perfworks Metrics API.. 56

1.8.1. Derived metrics.. 59
1.8.2. Raw Metrics... 63
1.8.3. Metrics Mapping Table.. 63

1.9. Samples... 69
Chapter 2. Limitations...71
Chapter 3. Changelog.. 73

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | iii

LIST OF TABLES

Table 1 Capability 3.x Metrics ..15

Table 2 Capability 5.x Metrics ..23

Table 3 Capability 6.x Metrics ..32

Table 4 Capability 7.x (7.0 and 7.2) Metrics ...41

Table 5 Metrics Mapping Table from CUPTI to Perfworks for Compute Capability 7.064

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | iv

OVERVIEW

The CUDA Profiling Tools Interface (CUPTI) enables the creation of profiling and tracing
tools that target CUDA applications. CUPTI provides four APIs: the Activity API, the
Callback API, the Event API, and the Metric API. Using these APIs, you can develop
profiling tools that give insight into the CPU and GPU behavior of CUDA applications.
CUPTI is delivered as a dynamic library on all platforms supported by CUDA.

What's New
CUPTI contains below changes as part of the CUDA Toolkit 10.1 release.

‣ This release is focused on bug fixes and performance improvements.
‣ Event collection mode CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS is now

supported on all device classes including Geforce and Quadro.
‣ Support for NVTX string registration API nvtxDomainRegisterStringA().
‣ Added enum CUpti_PcieGen to list PCIE generations.

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 1

Chapter 1.
USAGE

1.1. CUPTI Compatibility and Requirements
New versions of the CUDA driver are backwards compatible with older versions
of CUPTI. For example, a developer using a profiling tool based on CUPTI 9.0 can
update to a more recently released CUDA driver. However, new versions of CUPTI
are not backwards compatible with older versions of the CUDA driver. For example, a
developer using a profiling tool based on CUPTI 9.0 must have a version of the CUDA
driver released with CUDA Toolkit 9.0 (or later) installed as well. CUPTI calls will fail
with CUPTI_ERROR_NOT_INITIALIZED if the CUDA driver version is not compatible
with the CUPTI version.

1.2. CUPTI Initialization
CUPTI initialization occurs lazily the first time you invoke any CUPTI function. For
the Activity, Event, Metric, and Callback APIs there are no requirements on when this
initialization must occur (i.e. you can invoke the first CUPTI function at any point).
See the CUPTI Activity API section for more information on CUPTI initialization
requirements for the activity API.

1.3. CUPTI Activity API
The CUPTI Activity API allows you to asynchronously collect a trace of an application's
CPU and GPU CUDA activity. The following terminology is used by the activity API.
Activity Record

CPU and GPU activity is reported in C data structures called activity records. There
is a different C structure type for each activity kind (e.g. CUpti_ActivityMemcpy).
Records are generically referred to using the CUpti_Activity type. This

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 2

type contains only a field that indicates the kind of the activity record. Using
this kind, the object can be cast from the generic CUpti_Activity type to the
specific type representing the activity. See the printActivity function in the
activity_trace_async sample for an example.

Activity Buffer
An activity buffer is used to transfer one or more activity records from CUPTI to the
client. CUPTI fills activity buffers with activity records as the corresponding activities
occur on the CPU and GPU. The CUPTI client is responsible for providing empty
activity buffers as necessary to ensure that no records are dropped.

An asynchronous buffering API is implemented by
cuptiActivityRegisterCallbacks and cuptiActivityFlushAll.

It is not required that the activity API be initalized before CUDA initialization. All
related activities occuring after initializing the activity API are collected. You can
force initialization of the activity API by enabling one or more activity kinds using
cuptiActivityEnable or cuptiActivityEnableContext, as shown in the
initTrace function of the activity_trace_async sample. Some activity kinds cannot be
directly enabled, see the API documentation for CUpti_ActivityKind for details. The
functions cuptiActivityEnable and cuptiActivityEnableContext will return
CUPTI_ERROR_NOT_COMPATIBLE if the requested activity kind cannot be enabled.

The activity buffer API uses callbacks to request and return buffers of activity
records. To use the asynchronous buffering API, you must first register two callbacks
using cuptiActivityRegisterCallbacks. One of these callbacks will be
invoked whenever CUPTI needs an empty activity buffer. The other callback is
used to deliver a buffer containing one or more activity records to the client. To
minimize profiling overhead the client should return as quickly as possible from these
callbacks. The function cuptiActivityFlushAll can be used to force CUPTI to
deliver any activity buffers that contain completed activity records. The functions
cuptiActivityGetAttribute and cuptiActivitySetAttribute can be used
to read and write attributes that control how the buffering API behaves. See the API
documentation for more information.

The activity_trace_async sample shows how to use the activity buffer API to collect a
trace of CPU and GPU activity for a simple application.

1.3.1. SASS Source Correlation
While high-level languages for GPU programming like CUDA C offer a useful level of
abstraction, convenience, and maintainability, they inherently hide some of the details of
the execution on the hardware. It is sometimes helpful to analyze performance problems
for a kernel at the assembly instruction level. Reading assembly language is tedious and
challenging; CUPTI can help you to build the correlation between lines in your high-
level source code and the executed assembly instructions.

Building SASS source correlation for a PC can be split into two parts:

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 3

‣ Correlation of the PC to SASS instruction - subscribe to any
one of the CUPTI_CBID_RESOURCE_MODULE_LOADED,
CUPTI_CBID_RESOURCE_MODULE_UNLOAD_STARTING, or
CUPTI_CBID_RESOURCE_MODULE_PROFILED callbacks. This returns a
CUpti_ModuleResourceData structure having the CUDA binary. The binary can
be disassembled using the nvdisasm utility that comes with the CUDA toolkit. An
application can have multiple functions and modules, to uniquely identify there is
a functionId field in all source level activity records. This uniquely corresponds
to a CUPTI_ACTIVITY_KIND_FUNCTION, which has the unique module ID and
function ID in the module.

‣ Correlation of the SASS instruction to CUDA source line - every source level
activity has a sourceLocatorId field which uniquely maps to a record of kind
CUPTI_ACTIVITY_KIND_SOURCE_LOCATOR, containing the line and file name
information. Please note that multiple PCs can correspond to a single source line.

When any source level activity (global access, branch, PC Sampling, etc.) is
enabled, a source locator record is generated for the PCs that have the source
level results. The record CUpti_ActivityInstructionCorrelation can be
used, along with source level activities, to generate SASS assembly instructions
to CUDA C source code mapping for all the PCs of the function, and not just the
PCs that have the source level results. This can be enabled using the activity kind
CUPTI_ACTIVITY_KIND_INSTRUCTION_CORRELATION.

The sass_source_map sample shows how to map SASS assembly instructions to CUDA
C source.

1.3.2. PC Sampling
CUPTI supports device-wide sampling of the program counter (PC). The PC Sampling
gives the number of samples for each source and assembly line with various stall
reasons. Using this information, you can pinpoint portions of your kernel that are
introducing latencies and the reason for the latency. Samples are taken in round robin
order for all active warps at a fixed number of cycles, regardless of whether the warp is
issuing an instruction or not.

Devices with compute capability 6.0 and higher have a new feature that gives latency
reasons. The latency samples indicate the reasons for holes in the issue pipeline. While
collecting these samples, there is no instruction issued in the respective warp scheduler,
hence these give the latency reasons. The latency reasons will be one of the stall reasons
listed in the enum CUpti_ActivityPCSamplingStallReason, except stall reason
CUPTI_ACTIVITY_PC_SAMPLING_STALL_NOT_SELECTED.

The activity record CUpti_ActivityPCSampling3, enabled using activity kind
CUPTI_ACTIVITY_KIND_PC_SAMPLING, outputs the stall reason along with PC and
other related information. The enum CUpti_ActivityPCSamplingStallReason
lists all the stall reasons. Sampling period is configurable and can be tuned using

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 4

API cuptiActivityConfigurePCSampling. A wide range of sampling
periods, ranging from 2^5 cycles to 2^31 cycles per sample, is supported. This
can be controlled through the field samplingPeriod2 in the PC sampling
configuration struct CUpti_ActivityPCSamplingConfig. The activity record
CUpti_ActivityPCSamplingRecordInfo provides the total and dropped samples
for each kernel profiled for PC sampling.

This feature is available on devices with compute capability 5.2 and higher, excluding
mobile devices.

The pc_sampling sample shows how to use these APIs to collect PC Sampling profiling
information for a kernel.

1.3.3. NVLink
NVIDIA NVLink is a high-bandwidth, energy-efficient interconnect that enables fast
communication between the CPU and GPU, and between GPUs. CUPTI provides
NVLink topology information and NVLink transmit/receive throughput metrics.

The activity record CUpti_ActivityNVLink2, enabled using activity kind
CUPTI_ACTIVITY_KIND_NVLink, outputs NVLink topology information in terms
of logical NVLinks. A logical NVLink is connected between 2 devices, the device can
be of type NPU (NVLink Processing Unit), which can be CPU or GPU. Each device
can support up to 6 NVLinks, hence one logical link can comprise of 1 to 6 physical
NVLinks. The field physicalNvLinkCount gives the number of physical links in
this logical link. The fields portDev0 and portDev1 give information about the slot
in which physical NVLinks are connected for a logical link. This port is the same as
the instance of NVLink metrics profiled from a device. Therefore, port and instance
information should be used to correlate the per-instance metric values with the physical
NVLinks, and in turn to the topology. The field flag gives the properties of a logical
link, whether the link has access to system memory or peer device memory, and has
capabilities to do system memory or peer memmory atomics. The field bandwidth
gives the bandwidth of the logical link in kilobytes/sec.

CUPTI provides some metrics for each physical link. Metrics are provided for data
transmitted/received, transmit/receive throughput, and header versus user data
overhead for each physical NVLink. These metrics are also provided per packet type
(read/write/ atomics/response) to get more detailed insight in the NVLink traffic.

This feature is available on devices with compute capability 6.0 and 7.0.

The nvlink_bandwidth sample shows how to use these APIs to collect NVLink metrics
and topology, as well as how to correlate metrics with the topology.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 5

1.3.4. OpenACC
On Linux x86_64, CUPTI supports collecting information for OpenACC applications
using the OpenACC tools interface implementation of the PGI runtime. In addition to
being available only on 64bit Linux platforms, this feature also requires PGI runtime
version 15.7 or higher.

The activity records CUpti_ActivityOpenAccData,
CUpti_ActivityOpenAccLaunch, and CUpti_ActivityOpenAccOther
are created, representing the three groups of callback events specified in
the OpenACC tools interface. CUPTI_ACTIVITY_KIND_OPENACC_DATA,
CUPTI_ACTIVITY_KIND_OPENACC_LAUNCH, and
CUPTI_ACTIVITY_KIND_OPENACC_OTHER can be enabled to collect the respective
activity records.

Due to the restrictions of the OpenACC tools interface, CUPTI cannot record OpenACC
records from within the client application. Instead, a shared library that exports
the acc_register_library function defined in the OpenACC tools interface
specification must be implemented. Parameters passed into this function from the
OpenACC runtime can be used to initialize the CUPTI OpenACC measurement using
cuptiOpenACCInitialize. Before starting the client application, the environment
variable ACC_PROFLIB must be set to point to this shared library.

cuptiOpenACCInitialize is defined in cupti_openacc.h, which is included by
cupti_activity.h. Since the CUPTI OpenACC header is only available on supported
platforms, CUPTI clients must define CUPTI_OPENACC_SUPPORT when compiling.

The openacc_trace sample shows how to use CUPTI APIs for OpenACC data collection.

1.3.5. External Correlation
Starting with CUDA 8.0, CUPTI supports correlation of CUDA API activity records with
external APIs. Such APIs include OpenACC, OpenMP, and MPI. This associates CUPTI
correlation IDs with IDs provided by the external API. Both IDs are stored in a new
activity record of type CUpti_ActivityExternalCorrelation.

CUPTI maintains a stack of external correlation IDs per CPU thread
and per CUpti_ExternalCorrelationKind. Clients must use
cuptiActivityPushExternalCorrelationId to push an external ID of a
specific kind to this stack and cuptiActivityPopExternalCorrelationId
to remove the latest ID. If a CUDA API activity record is generated while
any CUpti_ExternalCorrelationKind-stack on the same CPU thread
is non-empty, one CUpti_ActivityExternalCorrelation record per
CUpti_ExternalCorrelationKind-stack is inserted into the activity buffer before
the respective CUDA API activity record. The CUPTI client is responsible for tracking

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 6

passed external API correlation IDs, in order to eventually associate external API calls
with CUDA API calls.

If both CUPTI_ACTIVITY_KIND_EXTERNAL_CORRELATION and any of
CUPTI_ACTIVITY_KIND_OPENACC_* activity kinds are enabled, CUPTI will
generate external correlation activity records for OpenACC with externalKind
CUPTI_EXTERNAL_CORRELATION_KIND_OPENACC.

1.4. CUPTI Callback API
The CUPTI Callback API allows you to register a callback into your own code. Your
callback will be invoked when the application being profiled calls a CUDA runtime
or driver function, or when certain events occur in the CUDA driver. The following
terminology is used by the callback API.
Callback Domain

Callbacks are grouped into domains to make it easier to associate your callback
functions with groups of related CUDA functions or events. There are currently
four callback domains, as defined by CUpti_CallbackDomain: a domain for
CUDA runtime functions, a domain for CUDA driver functions, a domain for CUDA
resource tracking, and a domain for CUDA synchronization notification.

Callback ID
Each callback is given a unique ID within the corresponding callback domain
so that you can identify it within your callback function. The CUDA driver API
IDs are defined in cupti_driver_cbid.h and the CUDA runtime API IDs are
defined in cupti_runtime_cbid.h. Both of these headers are included for you
when you include cupti.h. The CUDA resource callback IDs are defined by
CUpti_CallbackIdResource, and the CUDA synchronization callback IDs are
defined by CUpti_CallbackIdSync.

Callback Function
Your callback function must be of type CUpti_CallbackFunc. This function type
has two arguments that specify the callback domain and ID so that you know why
the callback is occurring. The type also has a cbdata argument that is used to pass
data specific to the callback.

Subscriber
A subscriber is used to associate each of your callback functions with one or
more CUDA API functions. There can be at most one subscriber initialized with
cuptiSubscribe() at any time. Before initializing a new subscriber, the existing
subscriber must be finalized with cuptiUnsubscribe().

Each callback domain is described in detail below. Unless explicitly stated, it is not
supported to call any CUDA runtime or driver API from within a callback function.
Doing so may cause the application to hang.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 7

1.4.1. Driver and Runtime API Callbacks
Using the callback API with the CUPTI_CB_DOMAIN_DRIVER_API or
CUPTI_CB_DOMAIN_RUNTIME_API domains, you can associate a callback function
with one or more CUDA API functions. When those CUDA functions are invoked in the
application, your callback function is invoked as well. For these domains, the cbdata
argument to your callback function will be of the type CUpti_CallbackData.

It is legal to call cudaThreadSynchronize(), cudaDeviceSynchronize(),
cudaStreamSynchronize(), cuCtxSynchronize(), and
cuStreamSynchronize() from within a driver or runtime API callback function.

The following code shows a typical sequence used to associate a callback function with
one or more CUDA API functions. To simplify the presentation, error checking code has
been removed.
 CUpti_SubscriberHandle subscriber;
 MyDataStruct *my_data = ...;
 ...
 cuptiSubscribe(&subscriber,
 (CUpti_CallbackFunc)my_callback , my_data);
 cuptiEnableDomain(1, subscriber,
 CUPTI_CB_DOMAIN_RUNTIME_API);

First, cuptiSubscribe is used to initialize a subscriber with the my_callback
callback function. Next, cuptiEnableDomain is used to associate that callback with all
the CUDA runtime API functions. Using this code sequence will cause my_callback to
be called twice each time any of the CUDA runtime API functions are invoked, once on
entry to the CUDA function and once just before exit from the CUDA function. CUPTI
callback API functions cuptiEnableCallback and cuptiEnableAllDomains can
also be used to associate CUDA API functions with a callback (see reference below for
more information).

The following code shows a typical callback function.
void CUPTIAPI
my_callback(void *userdata, CUpti_CallbackDomain domain,
 CUpti_CallbackId cbid, const void *cbdata)
{
 const CUpti_CallbackData *cbInfo = (CUpti_CallbackData *)cbdata;
 MyDataStruct *my_data = (MyDataStruct *)userdata;

 if ((domain == CUPTI_CB_DOMAIN_RUNTIME_API) &&
 (cbid == CUPTI_RUNTIME_TRACE_CBID_cudaMemcpy_v3020)) {
 if (cbInfo->callbackSite == CUPTI_API_ENTER) {
 cudaMemcpy_v3020_params *funcParams =
 (cudaMemcpy_v3020_params *)(cbInfo->
 functionParams);

 size_t count = funcParams->count;
 enum cudaMemcpyKind kind = funcParams->kind;
 ...
 }
 ...

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 8

In your callback function, you use the CUpti_CallbackDomain and
CUpti_CallbackID parameters to determine which CUDA API function invocation
is causing this callback. In the example above, we are checking for the CUDA runtime
cudaMemcpy function. The cbdata parameter holds a structure of useful information
that can be used within the callback. In this case, we use the callbackSite member
of the structure to detect that the callback is occurring on entry to cudaMemcpy, and
we use the functionParams member to access the parameters that were passed to
cudaMemcpy. To access the parameters, we first cast functionParams to a structure
type corresponding to the cudaMemcpy function. These parameter structures are
contained in generated_cuda_runtime_api_meta.h, generated_cuda_meta.h,
and a number of other files. When possible, these files are included for you by cupti.h.

The callback_event and callback_timestamp samples described on the samples page
both show how to use the callback API for the driver and runtime API domains.

1.4.2. Resource Callbacks
Using the callback API with the CUPTI_CB_DOMAIN_RESOURCE domain, you can
associate a callback function with some CUDA resource creation and destruction
events. For example, when a CUDA context is created, your callback function will be
invoked with a callback ID equal to CUPTI_CBID_RESOURCE_CONTEXT_CREATED.
For this domain, the cbdata argument to your callback function will be of the type
CUpti_ResourceData.

Note that APIs cuptiActivityFlush and cuptiActivityFlushAll will result in
deadlock when called from stream destroy starting callback identified using callback ID
CUPTI_CBID_RESOURCE_STREAM_DESTROY_STARTING.

1.4.3. Synchronization Callbacks
Using the callback API with the CUPTI_CB_DOMAIN_SYNCHRONIZE domain, you can
associate a callback function with CUDA context and stream synchronizations. For
example, when a CUDA context is synchronized, your callback function will be invoked
with a callback ID equal to CUPTI_CBID_SYNCHRONIZE_CONTEXT_SYNCHRONIZED.
For this domain, the cbdata argument to your callback function will be of the type
CUpti_SynchronizeData.

1.4.4. NVIDIA Tools Extension Callbacks
Using the callback API with the CUPTI_CB_DOMAIN_NVTX domain, you can associate
a callback function with NVIDIA Tools Extension (NVTX) API functions. When an
NVTX function is invoked in the application, your callback function is invoked as well.
For these domains, the cbdata argument to your callback function will be of the type
CUpti_NvtxData.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 9

The NVTX library has its own convention for discovering the profiling library that will
provide the implementation of the NVTX callbacks. To receive callbacks, you must
set the NVTX environment variables appropriately so that when the application calls
an NVTX function, your profiling library receives the callbacks. The following code
sequence shows a typical initialization sequence to enable NVTX callbacks and activity
records.
/* Set env so CUPTI-based profiling library loads on first nvtx call. */
char *inj32_path = "/path/to/32-bit/version/of/cupti/based/profiling/library";
char *inj64_path = "/path/to/64-bit/version/of/cupti/based/profiling/library";
setenv("NVTX_INJECTION32_PATH", inj32_path, 1);
setenv("NVTX_INJECTION64_PATH", inj64_path, 1);

The following code shows a typical sequence used to associate a callback function with
one or more NVTX functions. To simplify the presentation, error checking code has been
removed.
CUpti_SubscriberHandle subscriber;
MyDataStruct *my_data = ...;
...
cuptiSubscribe(&subscriber,
 (CUpti_CallbackFunc)my_callback , my_data);
cuptiEnableDomain(1, subscriber,
 CUPTI_CB_DOMAIN_NVTX);

First, cuptiSubscribe is used to initialize a subscriber with the my_callback
callback function. Next, cuptiEnableDomain is used to associate that callback with
all the NVTX functions. Using this code sequence will cause my_callback to be called
once each time any of the NVTX functions are invoked. CUPTI callback API functions
cuptiEnableCallback and cuptiEnableAllDomains can also be used to associate
NVTX API functions with a callback (see reference below for more information).

The following code shows a typical callback function.
void CUPTIAPI
my_callback(void *userdata, CUpti_CallbackDomain domain,
 CUpti_CallbackId cbid, const void *cbdata)
{
 const CUpti_NvtxData *nvtxInfo = (CUpti_NvtxData *)cbdata;
 MyDataStruct *my_data = (MyDataStruct *)userdata;

 if ((domain == CUPTI_CB_DOMAIN_NVTX) &&
 (cbid == NVTX_CBID_CORE_NameOsThreadA)) {
 nvtxNameOsThreadA_params *params = (nvtxNameOsThreadA_params *)nvtxInfo->
 functionParams;
 ...
 }
 ...

In your callback function, you use the CUpti_CallbackDomain and
CUpti_CallbackID parameters to determine which NVTX API function
invocation is causing this callback. In the example above, we are checking for
the nvtxNameOsThreadA function. The cbdata parameter holds a structure
of useful information that can be used within the callback. In this case, we use
the functionParams member to access the parameters that were passed to
nvtxNameOsThreadA. To access the parameters, we first cast functionParams to a

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 10

structure type corresponding to the nvtxNameOsThreadA function. These parameter
structures are contained in generated_nvtx_meta.h.

1.5. CUPTI Event API
The CUPTI Event API allows you to query, configure, start, stop, and read the event
counters on a CUDA-enabled device. The following terminology is used by the event
API.
Event

An event is a countable activity, action, or occurrence on a device.
Event ID

Each event is assigned a unique identifier. A named event will represent the same
activity, action, or occurrence on all device types. But the named event may have
different IDs on different device families. Use cuptiEventGetIdFromName to get
the ID for a named event on a particular device.

Event Category
Each event is placed in one of the categories defined by CUpti_EventCategory.
The category indicates the general type of activity, action, or occurrence measured by
the event.

Event Domain
A device exposes one or more event domains. Each event domain represents a group
of related events available on that device. A device may have multiple instances of a
domain, indicating that the device can simultaneously record multiple instances of
each event within that domain.

Event Group
An event group is a collection of events that are managed together. The number and
type of events that can be added to an event group are subject to device-specific
limits. At any given time, a device may be configured to count events from a limited
number of event groups. All events in an event group must belong to the same event
domain.

Event Group Set
An event group set is a collection of event groups that can be enabled at the same
time. Event group sets are created by cuptiEventGroupSetsCreate and
cuptiMetricCreateEventGroupSets.

You can determine the events available on a device using the
cuptiDeviceEnumEventDomains and cuptiEventDomainEnumEvents functions.
The cupti_query sample described on the samples page shows how to use these
functions. You can also enumerate all the CUPTI events available on any device using
the cuptiEnumEventDomains function.

Configuring and reading event counts requires the following steps. First, select
your event collection mode. If you want to count events that occur during the
execution of a kernel, use cuptiSetEventCollectionMode to set mode

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 11

CUPTI_EVENT_COLLECTION_MODE_KERNEL. If you want to continuously sample
the event counts, use mode CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS.
Next, determine the names of the events that you want to count, and then
use the cuptiEventGroupCreate, cuptiEventGetIdFromName, and
cuptiEventGroupAddEvent functions to create and initialize an event group
with those events. If you are unable to add all the events to a single event group,
then you will need to create multiple event groups. Alternatively, you can use the
cuptiEventGroupSetsCreate function to automatically create the event group(s)
required for a set of events.

To begin counting a set of events, enable the event group or groups that contain those
events by using the cuptiEventGroupEnable function. If your events are contained
in multiple event groups, you may be unable to enable all of the event groups at the
same time, due to device limitations. In this case, you can gather the events across
multiple executions of the application or you can enable kernel replay. If you enable
kernel replay using cuptiEnableKernelReplayMode, you will be able to enable any
number of event groups and all the contained events will be collected.

Use the cuptiEventGroupReadEvent and/or cuptiEventGroupReadAllEvents
functions to read the event values. When you are done collecting events, use the
cuptiEventGroupDisable function to stop counting the events contained in an
event group. The callback_event sample described on the samples page shows how to
use these functions to create, enable, and disable event groups, and how to read event
counts.

For event collection mode CUPTI_EVENT_COLLECTION_MODE_KERNEL,
event or metric collection may significantly change the overall performance
characteristics of the application because all kernel executions that occur
between the cuptiEventGroupEnable and cuptiEventGroupDisable
calls are serialized on the GPU. This can be avoided by using mode
CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS, and restricting profiling to
events and metrics that can be collected in a single pass.

All the events and metrics except NVLink metrics are collected at the context level,
irrespective of the event collection mode. That is, events or metrics can be attributed
to the context being profiled and values can be accurately collected, when multiple
contexts are executing on the GPU. NVLink metrics are collected at device level for
all event collection modes.

In a system with multiple GPUs, events can be collected simultaneously on all the GPUs;
in other words, event profiling doesn't enforce any serialization of work across GPUs.
The event_multi_gpu sample shows how to use the CUPTI event and CUDA APIs on
such setups.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 12

1.5.1. Collecting Kernel Execution Events
A common use of the event API is to count a set of events during the execution
of a kernel (as demonstrated by the callback_event sample). The following
code shows a typical callback used for this purpose. Assume that the callback
was enabled only for a kernel launch using the CUDA runtime (i.e., by
cuptiEnableCallback(1, subscriber, CUPTI_CB_DOMAIN_RUNTIME_API,
CUPTI_RUNTIME_TRACE_CBID_cudaLaunch_v3020). To simplify the presentation,
error checking code has been removed.
static void CUPTIAPI
getEventValueCallback(void *userdata,
 CUpti_CallbackDomain domain,
 CUpti_CallbackId cbid,
 const void *cbdata)
{
 const CUpti_CallbackData *cbData =
 (CUpti_CallbackData *)cbdata;

 if (cbData->callbackSite == CUPTI_API_ENTER) {
 cudaDeviceSynchronize();
 cuptiSetEventCollectionMode(cbInfo->context,
 CUPTI_EVENT_COLLECTION_MODE_KERNEL);
 cuptiEventGroupEnable(eventGroup);
 }

 if (cbData->callbackSite == CUPTI_API_EXIT) {
 cudaDeviceSynchronize();
 cuptiEventGroupReadEvent(eventGroup,
 CUPTI_EVENT_READ_FLAG_NONE,
 eventId,
 &bytesRead, &eventVal);

 cuptiEventGroupDisable(eventGroup);
 }
}

Two synchronization points are used to ensure that events are counted only for the
execution of the kernel. If the application contains other threads that launch kernels,
then additional thread-level synchronization must also be introduced to ensure that
those threads do not launch kernels while the callback is collecting events. When the
cudaLaunch API is entered (that is, before the kernel is actually launched on the device),
cudaDeviceSynchronize is used to wait until the GPU is idle. The event collection
mode is set to CUPTI_EVENT_COLLECTION_MODE_KERNEL so that the event counters
are automatically started and stopped just before and after the kernel executes. Then
event collection is enabled with cuptiEventGroupEnable.

When the cudaLaunch API is exited (that is, after the kernel is queued for execution
on the GPU) another cudaDeviceSynchronize is used to cause the CPU thread
to wait for the kernel to finish execution. Finally, the event counts are read with
cuptiEventGroupReadEvent.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 13

1.5.2. Sampling Events
The event API can also be used to sample event values while a kernel or kernels
are executing (as demonstrated by the event_sampling sample). The sample shows
one possible way to perform the sampling. The event collection mode is set to
CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS so that the event counters run
continuously. Two threads are used in event_sampling: one thread schedules the
kernels and memcpys that perform the computation, while another thread wakes up
periodically to sample an event counter. In this sample, there is no correlation of the
event samples with what is happening on the GPU. To get some coarse correlation, you
can use cuptiDeviceGetTimestamp to collect the GPU timestamp at the time of the
sample and also at other interesting points in your application.

1.6. CUPTI Metric API
The CUPTI Metric API allows you to collect application metrics calculated from one or
more event values. The following terminology is used by the metric API.
Metric

A characteristic of an application that is calculated from one or more event values.
Metric ID

Each metric is assigned a unique identifier. A named metric will represent the same
characteristic on all device types. But the named metric may have different IDs on
different device families. Use cuptiMetricGetIdFromName to get the ID for a
named metric on a particular device.

Metric Category
Each metric is placed in one of the categories defined by CUpti_MetricCategory.
The category indicates the general type of the characteristic measured by the metric.

Metric Property
Each metric is calculated from input values. These input values can be events
or properties of the device or system. The available properties are defined by
CUpti_MetricPropertyID.

Metric Value
Each metric has a value that represents one of the kinds defined by
CUpti_MetricValueKind. For each value kind, there is a corresponding member
of the CUpti_MetricValue union that is used to hold the metric's value.

The tables included in this section list the metrics available for each device, as
determined by the device's compute capability. You can also determine the metrics
available on a device using the cuptiDeviceEnumMetrics function. The cupti_query
sample described on the samples page shows how to use this function. You can also
enumerate all the CUPTI metrics available on any device using the cuptiEnumMetrics
function.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 14

CUPTI provides two functions for calculating a metric value. cuptiMetricGetValue2
can be used to calculate a metric value when the device is not available. All
required event values and metric properties must be provided by the caller.
cuptiMetricGetValue can be used to calculate a metric value when the device is
available (as a CUdevice object). All required event values must be provided by the
caller, but CUPTI will determine the appropriate property values from the CUdevice
object.

Configuring and calculating metric values requires the following steps. First,
determine the name of the metric that you want to collect, and then use the
cuptiMetricGetIdFromName to get the metric ID. Use cuptiMetricEnumEvents
to get the events required to calculate the metric, and follow instructions
in the CUPTI Event API section to create the event groups for those events.
When creating event groups in this manner, it is important to use the result of
cuptiMetricGetRequiredEventGroupSets to properly group together events that
must be collected in the same pass to ensure proper metric calculation.

Alternatively, you can use the cuptiMetricCreateEventGroupSets function to
automatically create the event group(s) required for metrics' events. When using this
function, events will be grouped as required to most accurately calculate the metric; as a
result, it is not necessary to use cuptiMetricGetRequiredEventGroupSets.

If you are using cuptiMetricGetValue2, then you must also collect the required
metric property values using cuptiMetricEnumProperties.

Collect event counts as described in the CUPTI Event API section, and then use either
cuptiMetricGetValue or cuptiMetricGetValue2 to calculate the metric value
from the collected event and property values. The callback_metric sample described on
the samples page shows how to use the functions to calculate event values and calculate
a metric using cuptiMetricGetValue. Note that as shown in the example, you should
collect event counts from all domain instances, and normalize the counts to get the most
accurate metric values. It is necessary to normalize the event counts because the number
of event counter instances varies by device and by the event being counted.

For example, a device might have 8 multiprocessors but only have event counters
for 4 of the multiprocessors, and might have 3 memory units and only have events
counters for one memory unit. When calculating a metric that requires a multiprocessor
event and a memory unit event, the 4 multiprocessor counters should be summed and
multiplied by 2 to normalize the event count across the entire device. Similarly, the one
memory unit counter should be multiplied by 3 to normalize the event count across the
entire device. The normalized values can then be passed to cuptiMetricGetValue or
cuptiMetricGetValue2 to calculate the metric value.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 15

As described, the normalization assumes the kernel executes a sufficient number of
blocks to completely load the device. If the kernel has only a small number of blocks,
normalizing across the entire device may skew the result.

Starting CUDA Toolkit 10.0, events and metrics APIs from headers cupti_events.h and
cupti_metrics.h respectively are not supported for devices with compute capability
7.5 and higher. A new set of metric APIs are added for devices with compute
capability 7.0 and higher. These provide low and deterministic profiling overhead
on the target system. These APIs are currently supported on Linux x86 64-bit and
Windows 64-bit platforms, but not on IBM POWER, Mac and Tegra platforms. Note that
both the old and new metric APIs are supported for compute capability 7.0. This is to
enable transition of code to the new metric APIs. But one cannot mix the usage of the
old and new metric APIs. Refer to the CUPTI web page for documentation and details
for these new APIs.

1.6.1. Metrics Reference
This section contains detailed descriptions of the metrics that can be collected by the
CUPTI. A scope value of "Single-context" indicates that the metric can only be accurately
collected when a single context (CUDA or graphics) is executing on the GPU. A scope
value of "Multi-context" indicates that the metric can be accurately collected when
multiple contexts are executing on the GPU. A scope value of "Device" indicates that the
metric will be collected at device level, that is, it will include values for all the contexts
executing on the GPU.

1.6.1.1. Metrics for Capability 3.x
Devices with compute capability 3.x implement the metrics shown in the following
table. Note that for some metrics, the "Multi-context" scope is supported only for specific
devices. Such metrics are marked with "Multi-context*" under the "Scope" column. Refer
to the note at the bottom of the table.

Table 1 Capability 3.x Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active
cycle to the maximum number of warps
supported on a multiprocessor

Multi-context

alu_fu_utilization The utilization level of the multiprocessor
function units that execute integer and floating-
point arithmetic instructions on a scale of 0 to
10

Multi-context

atomic_replay_overhead Average number of replays due to atomic and
reduction bank conflicts for each instruction
executed

Multi-context

https://developer.nvidia.com/cupti

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 16

Metric Name Description Scope

atomic_throughput Global memory atomic and reduction
throughput

Multi-context

atomic_transactions Global memory atomic and reduction
transactions

Multi-context

atomic_transactions_per_request Average number of global memory atomic and
reduction transactions performed for each
atomic and reduction instruction

Multi-context

branch_efficiency Ratio of non-divergent branches to total
branches expressed as percentage. This is
available for compute capability 3.0.

Multi-context

cf_executed Number of executed control-flow instructions Multi-context

cf_fu_utilization The utilization level of the multiprocessor
function units that execute control-flow
instructions on a scale of 0 to 10

Multi-context

cf_issued Number of issued control-flow instructions Multi-context

dram_read_throughput Device memory read throughput. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

dram_read_transactions Device memory read transactions. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

dram_utilization The utilization level of the device memory
relative to the peak utilization on a scale of 0 to
10

Multi-
context*

dram_write_throughput Device memory write throughput. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

dram_write_transactions Device memory write transactions. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

ecc_throughput ECC throughput from L2 to DRAM. This is
available for compute capability 3.5 and 3.7.

Multi-
context*

ecc_transactions Number of ECC transactions between L2 and
DRAM. This is available for compute capability
3.5 and 3.7.

Multi-
context*

eligible_warps_per_cycle Average number of warps that are eligible to
issue per active cycle

Multi-context

flop_count_dp Number of double-precision floating-point
operations executed by non-predicated threads
(add, multiply and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count.

Multi-context

flop_count_dp_add Number of double-precision floating-point add
operations executed by non-predicated threads

Multi-context

flop_count_dp_fma Number of double-precision floating-point
multiply-accumulate operations executed

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 17

Metric Name Description Scope

by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

flop_count_dp_mul Number of double-precision floating-point
multiply operations executed by non-predicated
threads

Multi-context

flop_count_sp Number of single-precision floating-point
operations executed by non-predicated threads
(add, multiply and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count. The count does not include special
operations.

Multi-context

flop_count_sp_add Number of single-precision floating-point add
operations executed by non-predicated threads

Multi-context

flop_count_sp_fma Number of single-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_sp_mul Number of single-precision floating-point
multiply operations executed by non-predicated
threads

Multi-context

flop_count_sp_special Number of single-precision floating-point special
operations executed by non-predicated threads

Multi-context

flop_dp_efficiency Ratio of achieved to peak double-precision
floating-point operations

Multi-context

flop_sp_efficiency Ratio of achieved to peak single-precision
floating-point operations

Multi-context

gld_efficiency Ratio of requested global memory load
throughput to required global memory load
throughput expressed as percentage

Multi-
context*

gld_requested_throughput Requested global memory load throughput Multi-context

gld_throughput Global memory load throughput Multi-
context*

gld_transactions Number of global memory load transactions Multi-
context*

gld_transactions_per_request Average number of global memory load
transactions performed for each global memory
load

Multi-
context*

global_cache_replay_overhead Average number of replays due to global
memory cache misses for each instruction
executed

Multi-context

global_replay_overhead Average number of replays due to global
memory cache misses

Multi-context

gst_efficiency Ratio of requested global memory store
throughput to required global memory store
throughput expressed as percentage

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 18

Metric Name Description Scope

gst_requested_throughput Requested global memory store throughput Multi-context

gst_throughput Global memory store throughput Multi-
context*

gst_transactions Number of global memory store transactions Multi-
context*

gst_transactions_per_request Average number of global memory store
transactions performed for each global memory
store

Multi-
context*

inst_bit_convert Number of bit-conversion instructions executed
by non-predicated threads

Multi-context

inst_compute_ld_st Number of compute load/store instructions
executed by non-predicated threads

Multi-context

inst_control Number of control-flow instructions executed by
non-predicated threads (jump, branch, etc.)

Multi-context

inst_executed The number of instructions executed Multi-context

inst_fp_32 Number of single-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_fp_64 Number of double-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_integer Number of integer instructions executed by non-
predicated threads

Multi-context

inst_inter_thread_communication Number of inter-thread communication
instructions executed by non-predicated threads

Multi-context

inst_issued The number of instructions issued Multi-context

inst_misc Number of miscellaneous instructions executed
by non-predicated threads

Multi-context

inst_per_warp Average number of instructions executed by
each warp

Multi-context

inst_replay_overhead Average number of replays for each instruction
executed

Multi-context

ipc Instructions executed per cycle Multi-context

ipc_instance Instructions executed per cycle for a single
multiprocessor

Multi-context

issue_slot_utilization Percentage of issue slots that issued at least one
instruction, averaged across all cycles

Multi-context

issue_slots The number of issue slots used Multi-context

issued_ipc Instructions issued per cycle Multi-context

l1_cache_global_hit_rate Hit rate in L1 cache for global loads Multi-
context*

l1_cache_local_hit_rate Hit rate in L1 cache for local loads and stores Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 19

Metric Name Description Scope

l1_shared_utilization The utilization level of the L1/shared memory
relative to peak utilization on a scale of 0 to 10.
This is available for compute capability 3.0, 3.5
and 3.7.

Multi-
context*

l2_atomic_throughput Memory read throughput seen at L2 cache for
atomic and reduction requests

Multi-
context*

l2_atomic_transactions Memory read transactions seen at L2 cache for
atomic and reduction requests

Multi-
context*

l2_l1_read_hit_rate Hit rate at L2 cache for all read requests
from L1 cache. This is available for compute
capability 3.0, 3.5 and 3.7.

Multi-
context*

l2_l1_read_throughput Memory read throughput seen at L2 cache for
read requests from L1 cache. This is available
for compute capability 3.0, 3.5 and 3.7.

Multi-
context*

l2_l1_read_transactions Memory read transactions seen at L2 cache
for all read requests from L1 cache. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

l2_l1_write_throughput Memory write throughput seen at L2 cache for
write requests from L1 cache. This is available
for compute capability 3.0, 3.5 and 3.7.

Multi-
context*

l2_l1_write_transactions Memory write transactions seen at L2 cache
for all write requests from L1 cache. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

l2_read_throughput Memory read throughput seen at L2 cache for
all read requests

Multi-
context*

l2_read_transactions Memory read transactions seen at L2 cache for
all read requests

Multi-
context*

l2_tex_read_transactions Memory read transactions seen at L2 cache for
read requests from the texture cache

Multi-
context*

l2_tex_read_hit_rate Hit rate at L2 cache for all read requests from
texture cache. This is available for compute
capability 3.0, 3.5 and 3.7.

Multi-
context*

l2_tex_read_throughput Memory read throughput seen at L2 cache for
read requests from the texture cache

Multi-
context*

l2_utilization The utilization level of the L2 cache relative to
the peak utilization on a scale of 0 to 10

Multi-
context*

l2_write_throughput Memory write throughput seen at L2 cache for
all write requests

Multi-
context*

l2_write_transactions Memory write transactions seen at L2 cache for
all write requests

Multi-
context*

ldst_executed Number of executed local, global, shared and
texture memory load and store instructions

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 20

Metric Name Description Scope

ldst_fu_utilization The utilization level of the multiprocessor
function units that execute global, local and
shared memory instructions on a scale of 0 to 10

Multi-context

ldst_issued Number of issued local, global, shared and
texture memory load and store instructions

Multi-context

local_load_throughput Local memory load throughput Multi-
context*

local_load_transactions Number of local memory load transactions Multi-
context*

local_load_transactions_per_request Average number of local memory load
transactions performed for each local memory
load

Multi-
context*

local_memory_overhead Ratio of local memory traffic to total memory
traffic between the L1 and L2 caches expressed
as percentage. This is available for compute
capability 3.0, 3.5 and 3.7.

Multi-
context*

local_replay_overhead Average number of replays due to local memory
accesses for each instruction executed

Multi-context

local_store_throughput Local memory store throughput Multi-
context*

local_store_transactions Number of local memory store transactions Multi-
context*

local_store_transactions_per_request Average number of local memory store
transactions performed for each local memory
store

Multi-
context*

nc_cache_global_hit_rate Hit rate in non coherent cache for global loads Multi-
context*

nc_gld_efficiency Ratio of requested non coherent global memory
load throughput to required non coherent
global memory load throughput expressed as
percentage

Multi-
context*

nc_gld_requested_throughput Requested throughput for global memory loaded
via non-coherent cache

Multi-context

nc_gld_throughput Non coherent global memory load throughput Multi-
context*

nc_l2_read_throughput Memory read throughput for non coherent
global read requests seen at L2 cache

Multi-
context*

nc_l2_read_transactions Memory read transactions seen at L2 cache for
non coherent global read requests

Multi-
context*

shared_efficiency Ratio of requested shared memory throughput
to required shared memory throughput
expressed as percentage

Multi-
context*

shared_load_throughput Shared memory load throughput Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 21

Metric Name Description Scope

shared_load_transactions Number of shared memory load transactions Multi-
context*

shared_load_transactions_per_request Average number of shared memory load
transactions performed for each shared memory
load

Multi-
context*

shared_replay_overhead Average number of replays due to shared
memory conflicts for each instruction executed

Multi-context

shared_store_throughput Shared memory store throughput Multi-
context*

shared_store_transactions Number of shared memory store transactions Multi-
context*

shared_store_transactions_per_request Average number of shared memory store
transactions performed for each shared memory
store

Multi-
context*

sm_efficiency The percentage of time at least one warp is
active on a multiprocessor averaged over all
multiprocessors on the GPU

Multi-
context*

sm_efficiency_instance The percentage of time at least one warp is
active on a specific multiprocessor

Multi-
context*

stall_constant_memory_dependency Percentage of stalls occurring because of
immediate constant cache miss. This is
available for compute capability 3.2, 3.5 and
3.7.

Multi-context

stall_exec_dependency Percentage of stalls occurring because an input
required by the instruction is not yet available

Multi-context

stall_inst_fetch Percentage of stalls occurring because the next
assembly instruction has not yet been fetched

Multi-context

stall_memory_dependency Percentage of stalls occurring because a
memory operation cannot be performed due to
the required resources not being available or
fully utilized, or because too many requests of a
given type are outstanding.

Multi-context

stall_memory_throttle Percentage of stalls occurring because of
memory throttle.

Multi-context

stall_not_selected Percentage of stalls occurring because warp was
not selected.

Multi-context

stall_other Percentage of stalls occurring due to
miscellaneous reasons

Multi-context

stall_pipe_busy Percentage of stalls occurring because a
compute operation cannot be performed
because the compute pipeline is busy. This is
available for compute capability 3.2, 3.5 and
3.7.

Multi-context

stall_sync Percentage of stalls occurring because the warp
is blocked at a __syncthreads() call

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 22

Metric Name Description Scope

stall_texture Percentage of stalls occurring because the
texture sub-system is fully utilized or has too
many outstanding requests

Multi-context

sysmem_read_throughput System memory read throughput. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

sysmem_read_transactions System memory read transactions. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

sysmem_read_utilization The read utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10. This is available for compute capability 3.0,
3.5 and 3.7.

Multi-context

sysmem_utilization The utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10. This is available for compute capability 3.0,
3.5 and 3.7.

Multi-
context*

sysmem_write_throughput System memory write throughput. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

sysmem_write_transactions System memory write transactions. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

sysmem_write_utilization The write utilization level of the system
memory relative to the peak utilization on a
scale of 0 to 10. This is available for compute
capability 3.0, 3.5 and 3.7.

Multi-context

tex_cache_hit_rate Texture cache hit rate Multi-
context*

tex_cache_throughput Texture cache throughput Multi-
context*

tex_cache_transactions Texture cache read transactions Multi-
context*

tex_fu_utilization The utilization level of the multiprocessor
function units that execute texture instructions
on a scale of 0 to 10

Multi-context

tex_utilization The utilization level of the texture cache
relative to the peak utilization on a scale of 0 to
10

Multi-
context*

warp_execution_efficiency Ratio of the average active threads per warp
to the maximum number of threads per warp
supported on a multiprocessor expressed as
percentage

Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp
executing non-predicated instructions to
the maximum number of threads per warp
supported on a multiprocessor expressed as
percentage

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 23

* The "Multi-context" scope for this metric is supported only for devices with compute
capability 3.0, 3.5, and 3.7.

1.6.1.2. Metrics for Capability 5.x
Devices with compute capability 5.x implement the metrics shown in the following
table. Note that for some metrics, the "Multi-context" scope is supported only for specific
devices. Such metrics are marked with "Multi-context*" under the "Scope" column. Refer
to the note at the bottom of the table.

Table 2 Capability 5.x Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active
cycle to the maximum number of warps
supported on a multiprocessor

Multi-context

atomic_transactions Global memory atomic and reduction
transactions

Multi-context

atomic_transactions_per_request Average number of global memory atomic and
reduction transactions performed for each
atomic and reduction instruction

Multi-context

branch_efficiency Ratio of non-divergent branches to total
branches expressed as percentage

Multi-context

cf_executed Number of executed control-flow instructions Multi-context

cf_fu_utilization The utilization level of the multiprocessor
function units that execute control-flow
instructions on a scale of 0 to 10

Multi-context

cf_issued Number of issued control-flow instructions Multi-context

double_precision_fu_utilization The utilization level of the multiprocessor
function units that execute double-precision
floating-point instructions on a scale of 0 to 10

Multi-context

dram_read_bytes Total bytes read from DRAM to L2 cache. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

dram_read_throughput Device memory read throughput. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

dram_read_transactions Device memory read transactions. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

dram_utilization The utilization level of the device memory
relative to the peak utilization on a scale of 0 to
10

Multi-
context*

dram_write_bytes Total bytes written from L2 cache to DRAM. This
is available for compute capability 5.0 and 5.2.

Multi-
context*

dram_write_throughput Device memory write throughput. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

dram_write_transactions Device memory write transactions. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 24

Metric Name Description Scope

ecc_throughput ECC throughput from L2 to DRAM. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

ecc_transactions Number of ECC transactions between L2 and
DRAM. This is available for compute capability
5.0 and 5.2.

Multi-
context*

eligible_warps_per_cycle Average number of warps that are eligible to
issue per active cycle

Multi-context

flop_count_dp Number of double-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count.

Multi-context

flop_count_dp_add Number of double-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_dp_fma Number of double-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_dp_mul Number of double-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_hp Number of half-precision floating-point
operations executed by non-predicated threads
(add, multiply and multiply-accumulate). Each
multiply-accumulate operation contributes
2 to the count. This is available for compute
capability 5.3.

Multi-
context*

flop_count_hp_add Number of half-precision floating-point add
operations executed by non-predicated threads.
This is available for compute capability 5.3.

Multi-
context*

flop_count_hp_fma Number of half-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count. This is available for compute capability
5.3.

Multi-
context*

flop_count_hp_mul Number of half-precision floating-point multiply
operations executed by non-predicated threads.
This is available for compute capability 5.3.

Multi-
context*

flop_count_sp Number of single-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count. The count does not include special
operations.

Multi-context

flop_count_sp_add Number of single-precision floating-point add
operations executed by non-predicated threads.

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 25

Metric Name Description Scope

flop_count_sp_fma Number of single-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_sp_mul Number of single-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_sp_special Number of single-precision floating-point special
operations executed by non-predicated threads.

Multi-context

flop_dp_efficiency Ratio of achieved to peak double-precision
floating-point operations

Multi-context

flop_hp_efficiency Ratio of achieved to peak half-precision
floating-point operations. This is available for
compute capability 5.3.

Multi-
context*

flop_sp_efficiency Ratio of achieved to peak single-precision
floating-point operations

Multi-context

gld_efficiency Ratio of requested global memory load
throughput to required global memory load
throughput expressed as percentage.

Multi-
context*

gld_requested_throughput Requested global memory load throughput Multi-context

gld_throughput Global memory load throughput Multi-
context*

gld_transactions Number of global memory load transactions Multi-
context*

gld_transactions_per_request Average number of global memory load
transactions performed for each global memory
load.

Multi-
context*

global_atomic_requests Total number of global atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

global_hit_rate Hit rate for global loads in unified l1/tex cache.
Metric value maybe wrong if malloc is used in
kernel.

Multi-
context*

global_load_requests Total number of global load requests from
Multiprocessor

Multi-context

global_reduction_requests Total number of global reduction requests from
Multiprocessor

Multi-context

global_store_requests Total number of global store requests from
Multiprocessor. This does not include atomic
requests.

Multi-context

gst_efficiency Ratio of requested global memory store
throughput to required global memory store
throughput expressed as percentage.

Multi-
context*

gst_requested_throughput Requested global memory store throughput Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 26

Metric Name Description Scope

gst_throughput Global memory store throughput Multi-
context*

gst_transactions Number of global memory store transactions Multi-
context*

gst_transactions_per_request Average number of global memory store
transactions performed for each global memory
store

Multi-
context*

half_precision_fu_utilization The utilization level of the multiprocessor
function units that execute 16 bit floating-
point instructions and integer instructions on a
scale of 0 to 10. This is available for compute
capability 5.3.

Multi-
context*

inst_bit_convert Number of bit-conversion instructions executed
by non-predicated threads

Multi-context

inst_compute_ld_st Number of compute load/store instructions
executed by non-predicated threads

Multi-context

inst_control Number of control-flow instructions executed by
non-predicated threads (jump, branch, etc.)

Multi-context

inst_executed The number of instructions executed Multi-context

inst_executed_global_atomics Warp level instructions for global atom and
atom cas

Multi-context

inst_executed_global_loads Warp level instructions for global loads Multi-context

inst_executed_global_reductions Warp level instructions for global reductions Multi-context

inst_executed_global_stores Warp level instructions for global stores Multi-context

inst_executed_local_loads Warp level instructions for local loads Multi-context

inst_executed_local_stores Warp level instructions for local stores Multi-context

inst_executed_shared_atomics Warp level shared instructions for atom and
atom CAS

Multi-context

inst_executed_shared_loads Warp level instructions for shared loads Multi-context

inst_executed_shared_stores Warp level instructions for shared stores Multi-context

inst_executed_surface_atomics Warp level instructions for surface atom and
atom cas

Multi-context

inst_executed_surface_loads Warp level instructions for surface loads Multi-context

inst_executed_surface_reductions Warp level instructions for surface reductions Multi-context

inst_executed_surface_stores Warp level instructions for surface stores Multi-context

inst_executed_tex_ops Warp level instructions for texture Multi-context

inst_fp_16 Number of half-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.) This is available for
compute capability 5.3.

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 27

Metric Name Description Scope

inst_fp_32 Number of single-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_fp_64 Number of double-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_integer Number of integer instructions executed by non-
predicated threads

Multi-context

inst_inter_thread_communication Number of inter-thread communication
instructions executed by non-predicated threads

Multi-context

inst_issued The number of instructions issued Multi-context

inst_misc Number of miscellaneous instructions executed
by non-predicated threads

Multi-context

inst_per_warp Average number of instructions executed by
each warp

Multi-context

inst_replay_overhead Average number of replays for each instruction
executed

Multi-context

ipc Instructions executed per cycle Multi-context

issue_slot_utilization Percentage of issue slots that issued at least one
instruction, averaged across all cycles

Multi-context

issue_slots The number of issue slots used Multi-context

issued_ipc Instructions issued per cycle Multi-context

l2_atomic_throughput Memory read throughput seen at L2 cache for
atomic and reduction requests

Multi-context

l2_atomic_transactions Memory read transactions seen at L2 cache for
atomic and reduction requests

Multi-
context*

l2_global_atomic_store_bytes Bytes written to L2 from Unified cache for
global atomics (ATOM and ATOM CAS)

Multi-
context*

l2_global_load_bytes Bytes read from L2 for misses in Unified Cache
for global loads

Multi-
context*

l2_global_reduction_bytes Bytes written to L2 from Unified cache for
global reductions

Multi-
context*

l2_local_global_store_bytes Bytes written to L2 from Unified Cache for local
and global stores. This does not include global
atomics.

Multi-
context*

l2_local_load_bytes Bytes read from L2 for misses in Unified Cache
for local loads

Multi-
context*

l2_read_throughput Memory read throughput seen at L2 cache for
all read requests

Multi-
context*

l2_read_transactions Memory read transactions seen at L2 cache for
all read requests

Multi-
context*

l2_surface_atomic_store_bytes Bytes transferred between Unified Cache and L2
for surface atomics (ATOM and ATOM CAS)

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 28

Metric Name Description Scope

l2_surface_load_bytes Bytes read from L2 for misses in Unified Cache
for surface loads

Multi-
context*

l2_surface_reduction_bytes Bytes written to L2 from Unified Cache for
surface reductions

Multi-
context*

l2_surface_store_bytes Bytes written to L2 from Unified Cache for
surface stores. This does not include surface
atomics.

Multi-
context*

l2_tex_hit_rate Hit rate at L2 cache for all requests from
texture cache

Multi-
context*

l2_tex_read_hit_rate Hit rate at L2 cache for all read requests from
texture cache. This is available for compute
capability 5.0 and 5.2.

Multi-
context*

l2_tex_read_throughput Memory read throughput seen at L2 cache for
read requests from the texture cache

Multi-
context*

l2_tex_read_transactions Memory read transactions seen at L2 cache for
read requests from the texture cache

Multi-
context*

l2_tex_write_hit_rate Hit Rate at L2 cache for all write requests from
texture cache. This is available for compute
capability 5.0 and 5.2.

Multi-
context*

l2_tex_write_throughput Memory write throughput seen at L2 cache for
write requests from the texture cache

Multi-
context*

l2_tex_write_transactions Memory write transactions seen at L2 cache for
write requests from the texture cache

Multi-
context*

l2_utilization The utilization level of the L2 cache relative to
the peak utilization on a scale of 0 to 10

Multi-
context*

l2_write_throughput Memory write throughput seen at L2 cache for
all write requests

Multi-
context*

l2_write_transactions Memory write transactions seen at L2 cache for
all write requests

Multi-
context*

ldst_executed Number of executed local, global, shared and
texture memory load and store instructions

Multi-context

ldst_fu_utilization The utilization level of the multiprocessor
function units that execute shared load, shared
store and constant load instructions on a scale
of 0 to 10

Multi-context

ldst_issued Number of issued local, global, shared and
texture memory load and store instructions

Multi-context

local_hit_rate Hit rate for local loads and stores Multi-
context*

local_load_requests Total number of local load requests from
Multiprocessor

Multi-
context*

local_load_throughput Local memory load throughput Multi-
context*

local_load_transactions Number of local memory load transactions Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 29

Metric Name Description Scope

local_load_transactions_per_request Average number of local memory load
transactions performed for each local memory
load

Multi-
context*

local_memory_overhead Ratio of local memory traffic to total memory
traffic between the L1 and L2 caches expressed
as percentage

Multi-
context*

local_store_requests Total number of local store requests from
Multiprocessor

Multi-
context*

local_store_throughput Local memory store throughput Multi-
context*

local_store_transactions Number of local memory store transactions Multi-
context*

local_store_transactions_per_request Average number of local memory store
transactions performed for each local memory
store

Multi-
context*

pcie_total_data_received Total data bytes received through PCIe Device

pcie_total_data_transmitted Total data bytes transmitted through PCIe Device

shared_efficiency Ratio of requested shared memory throughput
to required shared memory throughput
expressed as percentage

Multi-
context*

shared_load_throughput Shared memory load throughput Multi-
context*

shared_load_transactions Number of shared memory load transactions Multi-
context*

shared_load_transactions_per_request Average number of shared memory load
transactions performed for each shared memory
load

Multi-
context*

shared_store_throughput Shared memory store throughput Multi-
context*

shared_store_transactions Number of shared memory store transactions Multi-
context*

shared_store_transactions_per_request Average number of shared memory store
transactions performed for each shared memory
store

Multi-
context*

shared_utilization The utilization level of the shared memory
relative to peak utilization on a scale of 0 to 10

Multi-
context*

single_precision_fu_utilization The utilization level of the multiprocessor
function units that execute single-precision
floating-point instructions and integer
instructions on a scale of 0 to 10

Multi-context

sm_efficiency The percentage of time at least one warp is
active on a specific multiprocessor

Multi-
context*

special_fu_utilization The utilization level of the multiprocessor
function units that execute sin, cos, ex2, popc,
flo, and similar instructions on a scale of 0 to 10

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 30

Metric Name Description Scope

stall_constant_memory_dependency Percentage of stalls occurring because of
immediate constant cache miss

Multi-context

stall_exec_dependency Percentage of stalls occurring because an input
required by the instruction is not yet available

Multi-context

stall_inst_fetch Percentage of stalls occurring because the next
assembly instruction has not yet been fetched

Multi-context

stall_memory_dependency Percentage of stalls occurring because a
memory operation cannot be performed due to
the required resources not being available or
fully utilized, or because too many requests of a
given type are outstanding

Multi-context

stall_memory_throttle Percentage of stalls occurring because of
memory throttle

Multi-context

stall_not_selected Percentage of stalls occurring because warp was
not selected

Multi-context

stall_other Percentage of stalls occurring due to
miscellaneous reasons

Multi-context

stall_pipe_busy Percentage of stalls occurring because a
compute operation cannot be performed
because the compute pipeline is busy

Multi-context

stall_sync Percentage of stalls occurring because the warp
is blocked at a __syncthreads() call

Multi-context

stall_texture Percentage of stalls occurring because the
texture sub-system is fully utilized or has too
many outstanding requests

Multi-context

surface_atomic_requests Total number of surface atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

surface_load_requests Total number of surface load requests from
Multiprocessor

Multi-context

surface_reduction_requests Total number of surface reduction requests from
Multiprocessor

Multi-context

surface_store_requests Total number of surface store requests from
Multiprocessor

Multi-context

sysmem_read_bytes Number of bytes read from system memory Multi-
context*

sysmem_read_throughput System memory read throughput Multi-
context*

sysmem_read_transactions Number of system memory read transactions Multi-
context*

sysmem_read_utilization The read utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10. This is available for compute capability 5.0
and 5.2.

Multi-context

sysmem_utilization The utilization level of the system memory
relative to the peak utilization on a scale of 0 to

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 31

Metric Name Description Scope

10. This is available for compute capability 5.0
and 5.2.

sysmem_write_bytes Number of bytes written to system memory Multi-
context*

sysmem_write_throughput System memory write throughput Multi-
context*

sysmem_write_transactions Number of system memory write transactions Multi-
context*

sysmem_write_utilization The write utilization level of the system
memory relative to the peak utilization on a
scale of 0 to 10. This is available for compute
capability 5.0 and 5.2.

Multi-
context*

tex_cache_hit_rate Unified cache hit rate Multi-
context*

tex_cache_throughput Unified cache throughput Multi-
context*

tex_cache_transactions Unified cache read transactions Multi-
context*

tex_fu_utilization The utilization level of the multiprocessor
function units that execute global, local and
texture memory instructions on a scale of 0 to
10

Multi-context

tex_utilization The utilization level of the unified cache
relative to the peak utilization on a scale of 0 to
10

Multi-
context*

texture_load_requests Total number of texture Load requests from
Multiprocessor

Multi-context

warp_execution_efficiency Ratio of the average active threads per warp
to the maximum number of threads per warp
supported on a multiprocessor

Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp
executing non-predicated instructions to
the maximum number of threads per warp
supported on a multiprocessor

Multi-context

* The "Multi-context" scope for this metric is supported only for devices with compute
capability 5.0 and 5.2.

1.6.1.3. Metrics for Capability 6.x
Devices with compute capability 6.x implement the metrics shown in the following
table.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 32

Table 3 Capability 6.x Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active
cycle to the maximum number of warps
supported on a multiprocessor

Multi-context

atomic_transactions Global memory atomic and reduction
transactions

Multi-context

atomic_transactions_per_request Average number of global memory atomic and
reduction transactions performed for each
atomic and reduction instruction

Multi-context

branch_efficiency Ratio of non-divergent branches to total
branches expressed as percentage

Multi-context

cf_executed Number of executed control-flow instructions Multi-context

cf_fu_utilization The utilization level of the multiprocessor
function units that execute control-flow
instructions on a scale of 0 to 10

Multi-context

cf_issued Number of issued control-flow instructions Multi-context

double_precision_fu_utilization The utilization level of the multiprocessor
function units that execute double-precision
floating-point instructions on a scale of 0 to 10

Multi-context

dram_read_bytes Total bytes read from DRAM to L2 cache Multi-context

dram_read_throughput Device memory read throughput. This is
available for compute capability 6.0 and 6.1.

Multi-context

dram_read_transactions Device memory read transactions. This is
available for compute capability 6.0 and 6.1.

Multi-context

dram_utilization The utilization level of the device memory
relative to the peak utilization on a scale of 0 to
10

Multi-context

dram_write_bytes Total bytes written from L2 cache to DRAM Multi-context

dram_write_throughput Device memory write throughput. This is
available for compute capability 6.0 and 6.1.

Multi-context

dram_write_transactions Device memory write transactions. This is
available for compute capability 6.0 and 6.1.

Multi-context

ecc_throughput ECC throughput from L2 to DRAM. This is
available for compute capability 6.1.

Multi-context

ecc_transactions Number of ECC transactions between L2 and
DRAM. This is available for compute capability
6.1.

Multi-context

eligible_warps_per_cycle Average number of warps that are eligible to
issue per active cycle

Multi-context

flop_count_dp Number of double-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count.

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 33

Metric Name Description Scope

flop_count_dp_add Number of double-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_dp_fma Number of double-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_dp_mul Number of double-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_hp Number of half-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count.

Multi-context

flop_count_hp_add Number of half-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_hp_fma Number of half-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_hp_mul Number of half-precision floating-point multiply
operations executed by non-predicated threads.

Multi-context

flop_count_sp Number of single-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count. The count does not include special
operations.

Multi-context

flop_count_sp_add Number of single-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_sp_fma Number of single-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_sp_mul Number of single-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_sp_special Number of single-precision floating-point special
operations executed by non-predicated threads.

Multi-context

flop_dp_efficiency Ratio of achieved to peak double-precision
floating-point operations

Multi-context

flop_hp_efficiency Ratio of achieved to peak half-precision
floating-point operations

Multi-context

flop_sp_efficiency Ratio of achieved to peak single-precision
floating-point operations

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 34

Metric Name Description Scope

gld_efficiency Ratio of requested global memory load
throughput to required global memory load
throughput expressed as percentage.

Multi-context

gld_requested_throughput Requested global memory load throughput Multi-context

gld_throughput Global memory load throughput Multi-context

gld_transactions Number of global memory load transactions Multi-context

gld_transactions_per_request Average number of global memory load
transactions performed for each global memory
load.

Multi-context

global_atomic_requests Total number of global atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

global_hit_rate Hit rate for global loads in unified l1/tex cache.
Metric value maybe wrong if malloc is used in
kernel.

Multi-context

global_load_requests Total number of global load requests from
Multiprocessor

Multi-context

global_reduction_requests Total number of global reduction requests from
Multiprocessor

Multi-context

global_store_requests Total number of global store requests from
Multiprocessor. This does not include atomic
requests.

Multi-context

gst_efficiency Ratio of requested global memory store
throughput to required global memory store
throughput expressed as percentage.

Multi-context

gst_requested_throughput Requested global memory store throughput Multi-context

gst_throughput Global memory store throughput Multi-context

gst_transactions Number of global memory store transactions Multi-context

gst_transactions_per_request Average number of global memory store
transactions performed for each global memory
store

Multi-context

half_precision_fu_utilization The utilization level of the multiprocessor
function units that execute 16 bit floating-point
instructions on a scale of 0 to 10

Multi-context

inst_bit_convert Number of bit-conversion instructions executed
by non-predicated threads

Multi-context

inst_compute_ld_st Number of compute load/store instructions
executed by non-predicated threads

Multi-context

inst_control Number of control-flow instructions executed by
non-predicated threads (jump, branch, etc.)

Multi-context

inst_executed The number of instructions executed Multi-context

inst_executed_global_atomics Warp level instructions for global atom and
atom cas

Multi-context

inst_executed_global_loads Warp level instructions for global loads Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 35

Metric Name Description Scope

inst_executed_global_reductions Warp level instructions for global reductions Multi-context

inst_executed_global_stores Warp level instructions for global stores Multi-context

inst_executed_local_loads Warp level instructions for local loads Multi-context

inst_executed_local_stores Warp level instructions for local stores Multi-context

inst_executed_shared_atomics Warp level shared instructions for atom and
atom CAS

Multi-context

inst_executed_shared_loads Warp level instructions for shared loads Multi-context

inst_executed_shared_stores Warp level instructions for shared stores Multi-context

inst_executed_surface_atomics Warp level instructions for surface atom and
atom cas

Multi-context

inst_executed_surface_loads Warp level instructions for surface loads Multi-context

inst_executed_surface_reductions Warp level instructions for surface reductions Multi-context

inst_executed_surface_stores Warp level instructions for surface stores Multi-context

inst_executed_tex_ops Warp level instructions for texture Multi-context

inst_fp_16 Number of half-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_fp_32 Number of single-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_fp_64 Number of double-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_integer Number of integer instructions executed by non-
predicated threads

Multi-context

inst_inter_thread_communication Number of inter-thread communication
instructions executed by non-predicated threads

Multi-context

inst_issued The number of instructions issued Multi-context

inst_misc Number of miscellaneous instructions executed
by non-predicated threads

Multi-context

inst_per_warp Average number of instructions executed by
each warp

Multi-context

inst_replay_overhead Average number of replays for each instruction
executed

Multi-context

ipc Instructions executed per cycle Multi-context

issue_slot_utilization Percentage of issue slots that issued at least one
instruction, averaged across all cycles

Multi-context

issue_slots The number of issue slots used Multi-context

issued_ipc Instructions issued per cycle Multi-context

l2_atomic_throughput Memory read throughput seen at L2 cache for
atomic and reduction requests

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 36

Metric Name Description Scope

l2_atomic_transactions Memory read transactions seen at L2 cache for
atomic and reduction requests

Multi-context

l2_global_atomic_store_bytes Bytes written to L2 from Unified cache for
global atomics (ATOM and ATOM CAS)

Multi-context

l2_global_load_bytes Bytes read from L2 for misses in Unified Cache
for global loads

Multi-context

l2_global_reduction_bytes Bytes written to L2 from Unified cache for
global reductions

Multi-context

l2_local_global_store_bytes Bytes written to L2 from Unified Cache for local
and global stores. This does not include global
atomics.

Multi-context

l2_local_load_bytes Bytes read from L2 for misses in Unified Cache
for local loads

Multi-context

l2_read_throughput Memory read throughput seen at L2 cache for
all read requests

Multi-context

l2_read_transactions Memory read transactions seen at L2 cache for
all read requests

Multi-context

l2_surface_atomic_store_bytes Bytes transferred between Unified Cache and L2
for surface atomics (ATOM and ATOM CAS)

Multi-context

l2_surface_load_bytes Bytes read from L2 for misses in Unified Cache
for surface loads

Multi-context

l2_surface_reduction_bytes Bytes written to L2 from Unified Cache for
surface reductions

Multi-context

l2_surface_store_bytes Bytes written to L2 from Unified Cache for
surface stores. This does not include surface
atomics.

Multi-context

l2_tex_hit_rate Hit rate at L2 cache for all requests from
texture cache

Multi-context

l2_tex_read_hit_rate Hit rate at L2 cache for all read requests from
texture cache. This is available for compute
capability 6.0 and 6.1.

Multi-context

l2_tex_read_throughput Memory read throughput seen at L2 cache for
read requests from the texture cache

Multi-context

l2_tex_read_transactions Memory read transactions seen at L2 cache for
read requests from the texture cache

Multi-context

l2_tex_write_hit_rate Hit Rate at L2 cache for all write requests from
texture cache. This is available for compute
capability 6.0 and 6.1.

Multi-context

l2_tex_write_throughput Memory write throughput seen at L2 cache for
write requests from the texture cache

Multi-context

l2_tex_write_transactions Memory write transactions seen at L2 cache for
write requests from the texture cache

Multi-context

l2_utilization The utilization level of the L2 cache relative to
the peak utilization on a scale of 0 to 10

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 37

Metric Name Description Scope

l2_write_throughput Memory write throughput seen at L2 cache for
all write requests

Multi-context

l2_write_transactions Memory write transactions seen at L2 cache for
all write requests

Multi-context

ldst_executed Number of executed local, global, shared and
texture memory load and store instructions

Multi-context

ldst_fu_utilization The utilization level of the multiprocessor
function units that execute shared load, shared
store and constant load instructions on a scale
of 0 to 10

Multi-context

ldst_issued Number of issued local, global, shared and
texture memory load and store instructions

Multi-context

local_hit_rate Hit rate for local loads and stores Multi-context

local_load_requests Total number of local load requests from
Multiprocessor

Multi-context

local_load_throughput Local memory load throughput Multi-context

local_load_transactions Number of local memory load transactions Multi-context

local_load_transactions_per_request Average number of local memory load
transactions performed for each local memory
load

Multi-context

local_memory_overhead Ratio of local memory traffic to total memory
traffic between the L1 and L2 caches expressed
as percentage

Multi-context

local_store_requests Total number of local store requests from
Multiprocessor

Multi-context

local_store_throughput Local memory store throughput Multi-context

local_store_transactions Number of local memory store transactions Multi-context

local_store_transactions_per_request Average number of local memory store
transactions performed for each local memory
store

Multi-context

nvlink_overhead_data_received Ratio of overhead data to the total data,
received through NVLink. This is available for
compute capability 6.0.

Device

nvlink_overhead_data_transmitted Ratio of overhead data to the total data,
transmitted through NVLink. This is available for
compute capability 6.0.

Device

nvlink_receive_throughput Number of bytes received per second through
NVLinks. This is available for compute capability
6.0.

Device

nvlink_total_data_received Total data bytes received through NVLinks
including headers. This is available for compute
capability 6.0.

Device

nvlink_total_data_transmitted Total data bytes transmitted through NVLinks
including headers. This is available for compute
capability 6.0.

Device

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 38

Metric Name Description Scope

nvlink_total_nratom_data_transmitted Total non-reduction atomic data bytes
transmitted through NVLinks. This is available
for compute capability 6.0.

Device

nvlink_total_ratom_data_transmitted Total reduction atomic data bytes transmitted
through NVLinks This is available for compute
capability 6.0.

Device

nvlink_total_response_data_received Total response data bytes received through
NVLink, response data includes data for
read requests and result of non-reduction
atomic requests. This is available for compute
capability 6.0.

Device

nvlink_total_write_data_transmitted Total write data bytes transmitted through
NVLinks. This is available for compute capability
6.0.

Device

nvlink_transmit_throughput Number of Bytes Transmitted per second
through NVLinks. This is available for compute
capability 6.0.

Device

nvlink_user_data_received User data bytes received through NVLinks,
doesn't include headers. This is available for
compute capability 6.0.

Device

nvlink_user_data_transmitted User data bytes transmitted through NVLinks,
doesn't include headers. This is available for
compute capability 6.0.

Device

nvlink_user_nratom_data_transmitted Total non-reduction atomic user data bytes
transmitted through NVLinks. This is available
for compute capability 6.0.

Device

nvlink_user_ratom_data_transmitted Total reduction atomic user data bytes
transmitted through NVLinks. This is available
for compute capability 6.0.

Device

nvlink_user_response_data_received Total user response data bytes received
through NVLink, response data includes data
for read requests and result of non-reduction
atomic requests. This is available for compute
capability 6.0.

Device

nvlink_user_write_data_transmitted User write data bytes transmitted through
NVLinks. This is available for compute capability
6.0.

Device

pcie_total_data_received Total data bytes received through PCIe Device

pcie_total_data_transmitted Total data bytes transmitted through PCIe Device

shared_efficiency Ratio of requested shared memory throughput
to required shared memory throughput
expressed as percentage

Multi-context

shared_load_throughput Shared memory load throughput Multi-context

shared_load_transactions Number of shared memory load transactions Multi-context

shared_load_transactions_per_request Average number of shared memory load
transactions performed for each shared memory
load

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 39

Metric Name Description Scope

shared_store_throughput Shared memory store throughput Multi-context

shared_store_transactions Number of shared memory store transactions Multi-context

shared_store_transactions_per_request Average number of shared memory store
transactions performed for each shared memory
store

Multi-context

shared_utilization The utilization level of the shared memory
relative to peak utilization on a scale of 0 to 10

Multi-context

single_precision_fu_utilization The utilization level of the multiprocessor
function units that execute single-precision
floating-point instructions and integer
instructions on a scale of 0 to 10

Multi-context

sm_efficiency The percentage of time at least one warp is
active on a specific multiprocessor

Multi-context

special_fu_utilization The utilization level of the multiprocessor
function units that execute sin, cos, ex2, popc,
flo, and similar instructions on a scale of 0 to 10

Multi-context

stall_constant_memory_dependency Percentage of stalls occurring because of
immediate constant cache miss

Multi-context

stall_exec_dependency Percentage of stalls occurring because an input
required by the instruction is not yet available

Multi-context

stall_inst_fetch Percentage of stalls occurring because the next
assembly instruction has not yet been fetched

Multi-context

stall_memory_dependency Percentage of stalls occurring because a
memory operation cannot be performed due to
the required resources not being available or
fully utilized, or because too many requests of a
given type are outstanding

Multi-context

stall_memory_throttle Percentage of stalls occurring because of
memory throttle

Multi-context

stall_not_selected Percentage of stalls occurring because warp was
not selected

Multi-context

stall_other Percentage of stalls occurring due to
miscellaneous reasons

Multi-context

stall_pipe_busy Percentage of stalls occurring because a
compute operation cannot be performed
because the compute pipeline is busy

Multi-context

stall_sync Percentage of stalls occurring because the warp
is blocked at a __syncthreads() call

Multi-context

stall_texture Percentage of stalls occurring because the
texture sub-system is fully utilized or has too
many outstanding requests

Multi-context

surface_atomic_requests Total number of surface atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

surface_load_requests Total number of surface load requests from
Multiprocessor

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 40

Metric Name Description Scope

surface_reduction_requests Total number of surface reduction requests from
Multiprocessor

Multi-context

surface_store_requests Total number of surface store requests from
Multiprocessor

Multi-context

sysmem_read_bytes Number of bytes read from system memory Multi-context

sysmem_read_throughput System memory read throughput Multi-context

sysmem_read_transactions Number of system memory read transactions Multi-context

sysmem_read_utilization The read utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10. This is available for compute capability 6.0
and 6.1.

Multi-context

sysmem_utilization The utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10. This is available for compute capability 6.0
and 6.1.

Multi-context

sysmem_write_bytes Number of bytes written to system memory Multi-context

sysmem_write_throughput System memory write throughput Multi-context

sysmem_write_transactions Number of system memory write transactions Multi-context

sysmem_write_utilization The write utilization level of the system
memory relative to the peak utilization on a
scale of 0 to 10. This is available for compute
capability 6.0 and 6.1.

Multi-context

tex_cache_hit_rate Unified cache hit rate Multi-context

tex_cache_throughput Unified cache throughput Multi-context

tex_cache_transactions Unified cache read transactions Multi-context

tex_fu_utilization The utilization level of the multiprocessor
function units that execute global, local and
texture memory instructions on a scale of 0 to
10

Multi-context

tex_utilization The utilization level of the unified cache
relative to the peak utilization on a scale of 0 to
10

Multi-context

texture_load_requests Total number of texture Load requests from
Multiprocessor

Multi-context

unique_warps_launched Number of warps launched. Value is unaffected
by compute preemption.

Multi-context

warp_execution_efficiency Ratio of the average active threads per warp
to the maximum number of threads per warp
supported on a multiprocessor

Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp
executing non-predicated instructions to
the maximum number of threads per warp
supported on a multiprocessor

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 41

1.6.1.4. Metrics for Capability 7.0
Devices with compute capability 7.0 implement the metrics shown in the following
table.

Table 4 Capability 7.x (7.0 and 7.2) Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active
cycle to the maximum number of warps
supported on a multiprocessor

Multi-context

atomic_transactions Global memory atomic and reduction
transactions

Multi-context

atomic_transactions_per_request Average number of global memory atomic and
reduction transactions performed for each
atomic and reduction instruction

Multi-context

branch_efficiency Ratio of branch instruction to sum of branch and
divergent branch instruction

Multi-context

cf_executed Number of executed control-flow instructions Multi-context

cf_fu_utilization The utilization level of the multiprocessor
function units that execute control-flow
instructions on a scale of 0 to 10

Multi-context

cf_issued Number of issued control-flow instructions Multi-context

double_precision_fu_utilization The utilization level of the multiprocessor
function units that execute double-precision
floating-point instructions on a scale of 0 to 10

Multi-context

dram_read_bytes Total bytes read from DRAM to L2 cache Multi-context

dram_read_throughput Device memory read throughput Multi-context

dram_read_transactions Device memory read transactions Multi-context

dram_utilization The utilization level of the device memory
relative to the peak utilization on a scale of 0 to
10

Multi-context

dram_write_bytes Total bytes written from L2 cache to DRAM Multi-context

dram_write_throughput Device memory write throughput Multi-context

dram_write_transactions Device memory write transactions Multi-context

eligible_warps_per_cycle Average number of warps that are eligible to
issue per active cycle

Multi-context

flop_count_dp Number of double-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count.

Multi-context

flop_count_dp_add Number of double-precision floating-point add
operations executed by non-predicated threads.

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 42

Metric Name Description Scope

flop_count_dp_fma Number of double-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_dp_mul Number of double-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_hp Number of half-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate contributes 2 or 4 to the
count based on the number of inputs.

Multi-context

flop_count_hp_add Number of half-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_hp_fma Number of half-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate contributes 2 or 4 to the count
based on the number of inputs.

Multi-context

flop_count_hp_mul Number of half-precision floating-point multiply
operations executed by non-predicated threads.

Multi-context

flop_count_sp Number of single-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count. The count does not include special
operations.

Multi-context

flop_count_sp_add Number of single-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_sp_fma Number of single-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_sp_mul Number of single-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_sp_special Number of single-precision floating-point special
operations executed by non-predicated threads.

Multi-context

flop_dp_efficiency Ratio of achieved to peak double-precision
floating-point operations

Multi-context

flop_hp_efficiency Ratio of achieved to peak half-precision
floating-point operations

Multi-context

flop_sp_efficiency Ratio of achieved to peak single-precision
floating-point operations

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 43

Metric Name Description Scope

gld_efficiency Ratio of requested global memory load
throughput to required global memory load
throughput expressed as percentage.

Multi-context

gld_requested_throughput Requested global memory load throughput Multi-context

gld_throughput Global memory load throughput Multi-context

gld_transactions Number of global memory load transactions Multi-context

gld_transactions_per_request Average number of global memory load
transactions performed for each global memory
load.

Multi-context

global_atomic_requests Total number of global atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

global_hit_rate Hit rate for global load and store in unified l1/
tex cache

Multi-context

global_load_requests Total number of global load requests from
Multiprocessor

Multi-context

global_reduction_requests Total number of global reduction requests from
Multiprocessor

Multi-context

global_store_requests Total number of global store requests from
Multiprocessor. This does not include atomic
requests.

Multi-context

gst_efficiency Ratio of requested global memory store
throughput to required global memory store
throughput expressed as percentage.

Multi-context

gst_requested_throughput Requested global memory store throughput Multi-context

gst_throughput Global memory store throughput Multi-context

gst_transactions Number of global memory store transactions Multi-context

gst_transactions_per_request Average number of global memory store
transactions performed for each global memory
store

Multi-context

half_precision_fu_utilization The utilization level of the multiprocessor
function units that execute 16 bit floating-point
instructions on a scale of 0 to 10. Note that this
doesn't specify the utilization level of tensor
core unit

Multi-context

inst_bit_convert Number of bit-conversion instructions executed
by non-predicated threads

Multi-context

inst_compute_ld_st Number of compute load/store instructions
executed by non-predicated threads

Multi-context

inst_control Number of control-flow instructions executed by
non-predicated threads (jump, branch, etc.)

Multi-context

inst_executed The number of instructions executed Multi-context

inst_executed_global_atomics Warp level instructions for global atom and
atom cas

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 44

Metric Name Description Scope

inst_executed_global_loads Warp level instructions for global loads Multi-context

inst_executed_global_reductions Warp level instructions for global reductions Multi-context

inst_executed_global_stores Warp level instructions for global stores Multi-context

inst_executed_local_loads Warp level instructions for local loads Multi-context

inst_executed_local_stores Warp level instructions for local stores Multi-context

inst_executed_shared_atomics Warp level shared instructions for atom and
atom CAS

Multi-context

inst_executed_shared_loads Warp level instructions for shared loads Multi-context

inst_executed_shared_stores Warp level instructions for shared stores Multi-context

inst_executed_surface_atomics Warp level instructions for surface atom and
atom cas

Multi-context

inst_executed_surface_loads Warp level instructions for surface loads Multi-context

inst_executed_surface_reductions Warp level instructions for surface reductions Multi-context

inst_executed_surface_stores Warp level instructions for surface stores Multi-context

inst_executed_tex_ops Warp level instructions for texture Multi-context

inst_fp_16 Number of half-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_fp_32 Number of single-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_fp_64 Number of double-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_integer Number of integer instructions executed by non-
predicated threads

Multi-context

inst_inter_thread_communication Number of inter-thread communication
instructions executed by non-predicated threads

Multi-context

inst_issued The number of instructions issued Multi-context

inst_misc Number of miscellaneous instructions executed
by non-predicated threads

Multi-context

inst_per_warp Average number of instructions executed by
each warp

Multi-context

inst_replay_overhead Average number of replays for each instruction
executed

Multi-context

ipc Instructions executed per cycle Multi-context

issue_slot_utilization Percentage of issue slots that issued at least one
instruction, averaged across all cycles

Multi-context

issue_slots The number of issue slots used Multi-context

issued_ipc Instructions issued per cycle Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 45

Metric Name Description Scope

l2_atomic_throughput Memory read throughput seen at L2 cache for
atomic and reduction requests

Multi-context

l2_atomic_transactions Memory read transactions seen at L2 cache for
atomic and reduction requests

Multi-context

l2_global_atomic_store_bytes Bytes written to L2 from L1 for global atomics
(ATOM and ATOM CAS)

Multi-context

l2_global_load_bytes Bytes read from L2 for misses in L1 for global
loads

Multi-context

l2_local_global_store_bytes Bytes written to L2 from L1 for local and global
stores. This does not include global atomics.

Multi-context

l2_local_load_bytes Bytes read from L2 for misses in L1 for local
loads

Multi-context

l2_read_throughput Memory read throughput seen at L2 cache for
all read requests

Multi-context

l2_read_transactions Memory read transactions seen at L2 cache for
all read requests

Multi-context

l2_surface_load_bytes Bytes read from L2 for misses in L1 for surface
loads

Multi-context

l2_surface_store_bytes Bytes read from L2 for misses in L1 for surface
stores

Multi-context

l2_tex_hit_rate Hit rate at L2 cache for all requests from
texture cache

Multi-context

l2_tex_read_hit_rate Hit rate at L2 cache for all read requests from
texture cache

Multi-context

l2_tex_read_throughput Memory read throughput seen at L2 cache for
read requests from the texture cache

Multi-context

l2_tex_read_transactions Memory read transactions seen at L2 cache for
read requests from the texture cache

Multi-context

l2_tex_write_hit_rate Hit Rate at L2 cache for all write requests from
texture cache

Multi-context

l2_tex_write_throughput Memory write throughput seen at L2 cache for
write requests from the texture cache

Multi-context

l2_tex_write_transactions Memory write transactions seen at L2 cache for
write requests from the texture cache

Multi-context

l2_utilization The utilization level of the L2 cache relative to
the peak utilization on a scale of 0 to 10

Multi-context

l2_write_throughput Memory write throughput seen at L2 cache for
all write requests

Multi-context

l2_write_transactions Memory write transactions seen at L2 cache for
all write requests

Multi-context

ldst_executed Number of executed local, global, shared and
texture memory load and store instructions

Multi-context

ldst_fu_utilization The utilization level of the multiprocessor
function units that execute shared load, shared

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 46

Metric Name Description Scope

store and constant load instructions on a scale
of 0 to 10

ldst_issued Number of issued local, global, shared and
texture memory load and store instructions

Multi-context

local_hit_rate Hit rate for local loads and stores Multi-context

local_load_requests Total number of local load requests from
Multiprocessor

Multi-context

local_load_throughput Local memory load throughput Multi-context

local_load_transactions Number of local memory load transactions Multi-context

local_load_transactions_per_request Average number of local memory load
transactions performed for each local memory
load

Multi-context

local_memory_overhead Ratio of local memory traffic to total memory
traffic between the L1 and L2 caches expressed
as percentage

Multi-context

local_store_requests Total number of local store requests from
Multiprocessor

Multi-context

local_store_throughput Local memory store throughput Multi-context

local_store_transactions Number of local memory store transactions Multi-context

local_store_transactions_per_request Average number of local memory store
transactions performed for each local memory
store

Multi-context

nvlink_overhead_data_received Ratio of overhead data to the total data,
received through NVLink.

Device

nvlink_overhead_data_transmitted Ratio of overhead data to the total data,
transmitted through NVLink.

Device

nvlink_receive_throughput Number of bytes received per second through
NVLinks.

Device

nvlink_total_data_received Total data bytes received through NVLinks
including headers.

Device

nvlink_total_data_transmitted Total data bytes transmitted through NVLinks
including headers.

Device

nvlink_total_nratom_data_transmitted Total non-reduction atomic data bytes
transmitted through NVLinks.

Device

nvlink_total_ratom_data_transmitted Total reduction atomic data bytes transmitted
through NVLinks.

Device

nvlink_total_response_data_received Total response data bytes received through
NVLink, response data includes data for read
requests and result of non-reduction atomic
requests.

Device

nvlink_total_write_data_transmitted Total write data bytes transmitted through
NVLinks.

Device

nvlink_transmit_throughput Number of Bytes Transmitted per second
through NVLinks.

Device

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 47

Metric Name Description Scope

nvlink_user_data_received User data bytes received through NVLinks,
doesn't include headers.

Device

nvlink_user_data_transmitted User data bytes transmitted through NVLinks,
doesn't include headers.

Device

nvlink_user_nratom_data_transmitted Total non-reduction atomic user data bytes
transmitted through NVLinks.

Device

nvlink_user_ratom_data_transmitted Total reduction atomic user data bytes
transmitted through NVLinks.

Device

nvlink_user_response_data_received Total user response data bytes received through
NVLink, response data includes data for read
requests and result of non-reduction atomic
requests.

Device

nvlink_user_write_data_transmitted User write data bytes transmitted through
NVLinks.

Device

pcie_total_data_received Total data bytes received through PCIe Device

pcie_total_data_transmitted Total data bytes transmitted through PCIe Device

shared_efficiency Ratio of requested shared memory throughput
to required shared memory throughput
expressed as percentage

Multi-context

shared_load_throughput Shared memory load throughput Multi-context

shared_load_transactions Number of shared memory load transactions Multi-context

shared_load_transactions_per_request Average number of shared memory load
transactions performed for each shared memory
load

Multi-context

shared_store_throughput Shared memory store throughput Multi-context

shared_store_transactions Number of shared memory store transactions Multi-context

shared_store_transactions_per_request Average number of shared memory store
transactions performed for each shared memory
store

Multi-context

shared_utilization The utilization level of the shared memory
relative to peak utilization on a scale of 0 to 10

Multi-context

single_precision_fu_utilization The utilization level of the multiprocessor
function units that execute single-precision
floating-point instructions on a scale of 0 to 10

Multi-context

sm_efficiency The percentage of time at least one warp is
active on a specific multiprocessor

Multi-context

special_fu_utilization The utilization level of the multiprocessor
function units that execute sin, cos, ex2, popc,
flo, and similar instructions on a scale of 0 to 10

Multi-context

stall_constant_memory_dependency Percentage of stalls occurring because of
immediate constant cache miss

Multi-context

stall_exec_dependency Percentage of stalls occurring because an input
required by the instruction is not yet available

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 48

Metric Name Description Scope

stall_inst_fetch Percentage of stalls occurring because the next
assembly instruction has not yet been fetched

Multi-context

stall_memory_dependency Percentage of stalls occurring because a
memory operation cannot be performed due to
the required resources not being available or
fully utilized, or because too many requests of a
given type are outstanding

Multi-context

stall_memory_throttle Percentage of stalls occurring because of
memory throttle

Multi-context

stall_not_selected Percentage of stalls occurring because warp was
not selected

Multi-context

stall_other Percentage of stalls occurring due to
miscellaneous reasons

Multi-context

stall_pipe_busy Percentage of stalls occurring because a
compute operation cannot be performed
because the compute pipeline is busy

Multi-context

stall_sleeping Percentage of stalls occurring because warp was
sleeping

Multi-context

stall_sync Percentage of stalls occurring because the warp
is blocked at a __syncthreads() call

Multi-context

stall_texture Percentage of stalls occurring because the
texture sub-system is fully utilized or has too
many outstanding requests

Multi-context

surface_atomic_requests Total number of surface atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

surface_load_requests Total number of surface load requests from
Multiprocessor

Multi-context

surface_reduction_requests Total number of surface reduction requests from
Multiprocessor

Multi-context

surface_store_requests Total number of surface store requests from
Multiprocessor

Multi-context

sysmem_read_bytes Number of bytes read from system memory Multi-context

sysmem_read_throughput System memory read throughput Multi-context

sysmem_read_transactions Number of system memory read transactions Multi-context

sysmem_read_utilization The read utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10

Multi-context

sysmem_utilization The utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10

Multi-context

sysmem_write_bytes Number of bytes written to system memory Multi-context

sysmem_write_throughput System memory write throughput Multi-context

sysmem_write_transactions Number of system memory write transactions Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 49

Metric Name Description Scope

sysmem_write_utilization The write utilization level of the system
memory relative to the peak utilization on a
scale of 0 to 10

Multi-context

tensor_precision_fu_utilization The utilization level of the multiprocessor
function units that execute tensor core
instructions on a scale of 0 to 10

Multi-context

tensor_int_fu_utilization The utilization level of the multiprocessor
function units that execute tensor core int8
instructions on a scale of 0 to 10. This metric
is only available for device with compute
capability 7.2.

Multi-context

tex_cache_hit_rate Unified cache hit rate Multi-context

tex_cache_throughput Unified cache to Multiprocessor read throughput Multi-context

tex_cache_transactions Unified cache to Multiprocessor read
transactions

Multi-context

tex_fu_utilization The utilization level of the multiprocessor
function units that execute global, local and
texture memory instructions on a scale of 0 to
10

Multi-context

tex_utilization The utilization level of the unified cache
relative to the peak utilization on a scale of 0 to
10

Multi-context

texture_load_requests Total number of texture Load requests from
Multiprocessor

Multi-context

warp_execution_efficiency Ratio of the average active threads per warp
to the maximum number of threads per warp
supported on a multiprocessor

Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp
executing non-predicated instructions to
the maximum number of threads per warp
supported on a multiprocessor

Multi-context

1.7. CUPTI Profiling API
This section covers performance profiling Host and Target APIs for CUDA. Broadly
profiling APIs are divided into following four sections:

‣ Enumeration (Host)
‣ Configuration (Host)
‣ Collection (Target)
‣ Evaluation (Host)

Host APIs provide a metric interface for enumeration, configuration and evaluation
that doesn't require a compute(GPU) device, and can also run in an offline mode. In the
samples section under extensions, profiler host utility covers the usage of host APIs.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 50

Target APIs are used for data collection of the metrics and requires a compute (GPU)
device. Refer to samples auto_rangeProfiling and userrange_profiling for usage of new
profiling APIs.

The list of metrics has been overhauled from earlier generation metrics
and event APIs, to support a standard naming convention based upon
unit__(subunit?)_(pipestage?)_quantity_qualifiers

1.7.1. Multi Pass Collection
NVIDIA GPU hardware has a limited number of counter registers and cannot collect
all possible counters concurrently. There are also limitations on which counters can be
collected together in a single pass. This is resolved by replaying the exact same set of
GPU workloads multiple times, where each replay is termed a pass. On each pass, a
different subset of requested counters are collected. Once all passes are collected, the
data is available for evaluation. Certain metrics have many counters as inputs; adding
a single metric may require many passes to collect. CUPTI APIs support multi pass
collection through different collection attributes.

1.7.2. Range Profiling
Each profiling session runs a series of replay passes, where each pass contains a
sequence of ranges. Every metric enabled in the session's configuration is collected
separately per unique range-stack in the pass. CUPTI supports auto and user defined
ranges.

1.7.2.1. Auto Range

In a session with auto range mode, ranges are defined around each kernel automatically
with a unique name assigned to each range, while profiling is enabled. This mode
is useful for tight metric collection around each kernel. A user can choose one of the
supported replay modes, pseudo code for each is described below:

Kernel Replay

The replay logic (multiple pass, if needed) is done by CUPTI implicitly (opaque
to the user), and usage of CUPTI replay API's cuptiProfilerBeginPass and
cuptiProfilerEndPass will be a no-op in this mode. This mode is useful for collecting
metrics around a kernel in tight control. Each kernel launch is asynchronized to
segregate its metrics into a separate range, and a CPU-GPU sync is made to ensure the
profiled data is collected from GPU. Counter Collection can be enabled and disabled

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 51

with cuptiProfilerEnableProfiling and cuptiProfilerDisableProfiling.
Refer to the sample autorange_profiling

/* Assume Inputs(counterDataImagePrefix and configImage) from configuration
 phase at host */
void Collection(std::vector<uint8_t>& counterDataImagePrefix,
 std::vector<uint8_t>& configImage)
{
 CUpti_Profiler_Initialize_Params profilerInitializeParams =
 { CUpti_Profiler_Initialize_Params_STRUCT_SIZE };
 cuptiProfilerInitialize(&profilerInitializeParams);

 std::vector<uint8_t> counterDataImages;
 std::vector<uint8_t> counterDataScratchBuffer;
 CreateCounterDataImage(counterDataImages, counterDataScratchBuffer,
 counterDataImagePrefix);

 CUpti_Profiler_BeginSession_Params beginSessionParams =
 { CUpti_Profiler_BeginSession_Params_STRUCT_SIZE };
 CUpti_ProfilerRange profilerRange = CUPTI_AutoRange;
 CUpti_ProfilerReplayMode profilerReplayMode = CUPTI_ReplayKernel;

 beginSessionParams.ctx = NULL;
 beginSessionParams.counterDataImageSize = counterDataImage.size();
 beginSessionParams.pCounterDataImage = &counterDataImage[0];
 beginSessionParams.counterDataScratchBufferSize =
 counterDataScratchBuffer.size();
 beginSessionParams.pCounterDataScratchBuffer = &counterDataScratchBuffer[0];
 beginSessionParams.collectionMethod = profilerCollectionMethod;
 beginSessionParams.replayMode = profilerReplayMode;
 beginSessionParams.maxRangesPerPass = num_ranges;
 beginSessionParams.maxLaunchesPerPass = num_ranges;

 cuptiProfilerBeginSession(&beginSessionParams));

 CUpti_Profiler_SetConfig_Params setConfigParams =
 { CUpti_Profiler_SetConfig_Params_STRUCT_SIZE };
 setConfigParams.pConfig = &configImage[0];
 setConfigParams.configSize = configImage.size();

 cuptiProfilerSetConfig(&setConfigParams));

 kernelA <<<grid, tids >>>(...); // KernelA not Profiled

 CUpti_Profiler_EnableProfiling_Params enableProfilingParams =
 { CUpti_Profiler_EnableProfiling_Params_STRUCT_SIZE };
 cuptiProfilerEnableProfiling(&enableProfilingParams);
 {

 kernelB <<<grid, tids >> >(...); // KernelB Profiled and captured
 in an unique range.
 kernelB <<<grid, tids >>>(...); // KernelB Profiled and captured
 in an unique range.
 kernelC <<<grid, tids >>>(...); // KernelC Profiled and captured
 in a unique range.
 }

 CUpti_Profiler_DisableProfiling_Params disableProfilingParams =
 { CUpti_Profiler_DisableProfiling_Params_STRUCT_SIZE };
 cuptiProfilerDisableProfiling(&disableProfilingParams);

 kernelD <<<grid, tids >>>(...) // KernelA not Profiled

 CUpti_Profiler_UnsetConfig_Params unsetConfigParams =
 { CUpti_Profiler_UnsetConfig_Params_STRUCT_SIZE };
 cuptiProfilerUnsetConfig(&unsetConfigParams);

 CUpti_Profiler_EndSession_Params endSessionParams =
 { CUpti_Profiler_EndSession_Params_STRUCT_SIZE };
 cuptiProfilerEndSession(&endSessionParams);
}

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 52

User Replay

The replay (multiple passes, if needed) is done by the user using the replay API's
cuptiProfilerBeginPass and cuptiProfilerEndPass. It is user responsibility to
flush the counter data cuptiProfilerFlushCounterData before ending the session to
ensure collection of metric data in CPU. Counter collection can be enabled and disabled

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 53

with cuptiProfilerEnableProfiling/ cuptiProfilerDisableProfiling. Refer
to the sample autorange_profiling

 /* Assume Inputs(counterDataImagePrefix and configImage) from configuration
 phase at host */

 void Collection(std::vector<uint8_t>& counterDataImagePrefix,
 std::vector<uint8_t>& configImage)
 {
 CUpti_Profiler_Initialize_Params profilerInitializeParams =
 {CUpti_Profiler_Initialize_Params_STRUCT_SIZE};
 cuptiProfilerInitialize(&profilerInitializeParams);

 std::vector<uint8_t> counterDataImages;
 std::vector<uint8_t> counterDataScratchBuffer;
 CreateCounterDataImage(counterDataImages, counterDataScratchBuffer,
 counterDataImagePrefix);

 CUpti_Profiler_BeginSession_Params beginSessionParams =
 {CUpti_Profiler_BeginSession_Params_STRUCT_SIZE};
 CUpti_ProfilerRange profilerRange = CUPTI_AutoRange;
 CUpti_ProfilerReplayMode profilerReplayMode = CUPTI_ReplayKernel;

 beginSessionParams.ctx = NULL;
 beginSessionParams.counterDataImageSize = counterDataImage.size();
 beginSessionParams.pCounterDataImage = &counterDataImage[0];
 beginSessionParams.counterDataScratchBufferSize =
 counterDataScratchBuffer.size();
 beginSessionParams.pCounterDataScratchBuffer =
 &counterDataScratchBuffer[0];
 beginSessionParams.collectionMethod = profilerCollectionMethod;
 beginSessionParams.replayMode = profilerReplayMode;
 beginSessionParams.maxRangesPerPass = num_ranges;
 beginSessionParams.maxLaunchesPerPass = num_ranges;

 cuptiProfilerBeginSession(&beginSessionParams));

 CUpti_Profiler_SetConfig_Params setConfigParams =
 {CUpti_Profiler_SetConfig_Params_STRUCT_SIZE};
 setConfigParams.pConfig = &configImage[0];
 setConfigParams.configSize = configImage.size();

 cuptiProfilerSetConfig(&setConfigParams));

 CUpti_Profiler_FlushCounterData_Params cuptiFlushCounterDataParams =
 {CUpti_Profiler_FlushCounterData_Params_STRUCT_SIZE};

 CUpti_Profiler_EnableProfiling_Params enableProfilingParams =
 {CUpti_Profiler_EnableProfiling_Params_STRUCT_SIZE};

 CUpti_Profiler_DisableProfiling_Params disableProfilingParams =
 {CUpti_Profiler_DisableProfiling_Params_STRUCT_SIZE};

 kernelA<<<grid, tids>>>(...); // KernelA neither
 profiler, nor replayed

 CUpti_Profiler_BeginPass_Params beginPassParams =
 {CUpti_Profiler_BeginPass_Params_STRUCT_SIZE};
 CUpti_Profiler_EndPass_Params endPassParams =
 {CUpti_Profiler_EndPass_Params_STRUCT_SIZE};

 cuptiProfilerBeginPass(&beginPassParams);
 {
 kernelB<<<grid, tids>>>(...); // Replayed but not
 profiled

 cuptiProfilerEnableProfiling(&enableProfilingParams);

 kernelB<<<grid, tids>>>(...); // KernelB Profiled and
 captured in an unique range.
 kernelC<<<grid, tids>>>(...); // KernelC Profiled and
 captured in an unique range.

 cuptiProfilerDisableProfiling(&disableProfilingParams);
 }
 cuptiProfilerEndPass(&endPassParams);

 cuptiProfilerFlushCounterData(&cuptiFlushCounterDataParams);

 kernelD<<<grid, tids>>>(...); // KernelD not Profiled

 CUpti_Profiler_UnsetConfig_Params unsetConfigParams =
 {CUpti_Profiler_UnsetConfig_Params_STRUCT_SIZE};
 cuptiProfilerUnsetConfig(&unsetConfigParams);

 CUpti_Profiler_EndSession_Params endSessionParams =
 {CUpti_Profiler_EndSession_Params_STRUCT_SIZE};
 cuptiProfilerEndSession(&endSessionParams);
 }

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 54

Application Replay

This replay mode is same as user replay, instead of in process replay, you can replay the
whole process again. You will need to update the pass index while setting the config
cuptiProfilerSetConfig and reload the intermediate counterDataImage on each
pass.

1.7.2.2. User Range

In a session with user range mode, ranges are defined by you,
cuptiProfilerPushRange and cuptiProfilerPopRange. Kernel launches are
concurrent within a range. This mode is useful for metric data collection around
a specific section of code, instead of per-kernel metric collection. Kernel replay
is not supported in user range mode. You own the responsibility of replay using
cuptiProfilerBeginPass and cuptiProfilerEndPass.

User Replay

The replay (multiple passes, if needed) is done by the user using the replay
API's cuptiProfilerBeginPass and cuptiProfilerEndPass. It is your
responsibility to flush the counter data using cuptiProfilerFlushCounterData
before ending the session. Counter collection can be enabled/disabled with

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 55

cuptiProfilerEnableProfiling and cuptiProfilerDisableProfiling. Refer to
the sample userrange_profiling
>
 /* Assume Inputs(counterDataImagePrefix and configImage) from configuration
 phase at host */

 void Collection(std::vector<uint8_t>& counterDataImagePrefix,
 std::vector<uint8_t>& configImage)
 {
 CUpti_Profiler_Initialize_Params profilerInitializeParams =
 {CUpti_Profiler_Initialize_Params_STRUCT_SIZE};
 cuptiProfilerInitialize(&profilerInitializeParams);

 std::vector<uint8_t> counterDataImages;
 std::vector<uint8_t> counterDataScratchBuffer;
 CreateCounterDataImage(counterDataImages, counterDataScratchBuffer,
 counterDataImagePrefix);

 CUpti_Profiler_BeginSession_Params beginSessionParams =
 {CUpti_Profiler_BeginSession_Params_STRUCT_SIZE};
 CUpti_ProfilerRange profilerRange = CUPTI_AutoRange;
 CUpti_ProfilerReplayMode profilerReplayMode = CUPTI_ReplayKernel;

 beginSessionParams.ctx = NULL;
 beginSessionParams.counterDataImageSize = counterDataImage.size();
 beginSessionParams.pCounterDataImage = &counterDataImage[0];
 beginSessionParams.counterDataScratchBufferSize =
 counterDataScratchBuffer.size();
 beginSessionParams.pCounterDataScratchBuffer =
 &counterDataScratchBuffer[0];
 beginSessionParams.collectionMethod = profilerCollectionMethod;
 beginSessionParams.replayMode = profilerReplayMode;
 beginSessionParams.maxRangesPerPass = num_ranges;
 beginSessionParams.maxLaunchesPerPass = num_ranges;

 cuptiProfilerBeginSession(&beginSessionParams));

 CUpti_Profiler_SetConfig_Params setConfigParams =
 {CUpti_Profiler_SetConfig_Params_STRUCT_SIZE};
 setConfigParams.pConfig = &configImage[0];
 setConfigParams.configSize = configImage.size();

 cuptiProfilerSetConfig(&setConfigParams));

 CUpti_Profiler_FlushCounterData_Params cuptiFlushCounterDataParams =
 {CUpti_Profiler_FlushCounterData_Params_STRUCT_SIZE};

 kernelA<<<grid, tids>>>(...); // KernelA neither
 profiler, nor replayed

 CUpti_Profiler_BeginPass_Params beginPassParams =
 {CUpti_Profiler_BeginPass_Params_STRUCT_SIZE};
 CUpti_Profiler_EndPass_Params endPassParams =
 {CUpti_Profiler_EndPass_Params_STRUCT_SIZE};

 cuptiProfilerBeginPass(&beginPassParams);
 {
 kernelB<<<grid, tids>>>(...); // Replayed but not
 profiled

 CUpti_Profiler_PushRange_Params enableProfilingParams =
 {CUpti_Profiler_PushRange_Params_STRUCT_SIZE};
 pushRangeParams.pRangeName = "RangeA";
 cuptiProfilerPushRange(&pushRangeParams);

 kernelB<<<grid, tids>>>(...);
 kernelC<<<grid, tids>>>(...);

 cuptiProfilerPopRange(&popRangeParams); // Kernel B and Kernel C
 are captured in rangeA without any serialization introduced by profiler
 }
 cuptiProfilerEndPass(&endPassParams);
 cuptiProfilerFlushCounterData(&cuptiFlushCounterDataParams);

 kernelD<<<grid, tids>>>(...); // KernelD not Profiled

 CUpti_Profiler_UnsetConfig_Params unsetConfigParams =
 {CUpti_Profiler_UnsetConfig_Params_STRUCT_SIZE};
 cuptiProfilerUnsetConfig(&unsetConfigParams);

 CUpti_Profiler_EndSession_Params endSessionParams =
 {CUpti_Profiler_EndSession_Params_STRUCT_SIZE};
 cuptiProfilerEndSession(&endSessionParams);
 }

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 56

Application Replay

This replay mode is same as user replay, instead of in process replay, you can replay
the whole process again. You will need to update the pass index while setting the
config using the cuptiProfilerSetConfig API, and reload the intermediate
counterDataImage on each pass.

1.7.3. CUPTI Profiler Definitions
Definitions of glossary used in this section.
Counter:

The number of occurrences of a specific event on the device.
Configuration Image:

A Blob to configure the session for counters to be collected.
CounterData Image:

A Blob which contains the values of collected counters
CounterData Prefix:

A metadata header for CounterData Image
Device:

A physical NVIDIA GPU.
Event:

An event is a countable activity, action, or occurrence on device.
Metric:

A high-level value derived from counter values.
Pass:

A repeatable set of operations, with consistently labeled ranges.
Range:

A labeled region of execution
Replay:

Performing the repeatable set of operation.
Session:

A profiling session where GPU resources needed for profiling are allocated. The
profiler is in armed state at session boundaries, and power management may be
disabled at session boundaries. Outside of a session, the GPU will return to its normal
operating state.

1.8. Perfworks Metrics API

Introduction:

The Perfworks Metrics API supports the enumeration, configuration, and evaluation of
metrics. The binary outputs of the configuration phase are inputs to the CUPTI Range

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 57

Profiling API. The output of Range Profiling is the CounterData, which is passed to the
Derived Metrics Evaluation APIs.

GPU Metrics are generally presented as counts, ratios, and percentages. The underlying
values collected from hardware are raw counters (analogous to CUPTI events), but those
details are hidden behind derived metric formulas.

The Metrics APIs are split into two layers: Derived Metrics and Raw Metrics. Derived
Metrics contains the list of named metrics, and performs evaluation to numeric results,
serving a similar purpose as the previous CUPTI Metric API. Most user interaction will
be with derived metrics. Raw Metrics contains the list of raw counters, and generates
configuration file images analogous to the previous CUPTI Event API.

Metric Enumeration

Metric Enumeration is the process of listing available counters and metrics.

Refer to file List.cpp used by the userrange_profiling sample.

The outline for enumerating metrics expanded by Perfworks:

‣ Call NVPW_MetricsContext_GetMetricNames_Begin to allow Perfworks to
expand the metric names.

‣ Copy the string names from the output buffer.
‣ Call NVPW_MetricsContext_GetMetricNames_End to free the string names

allocated by Perfworks by _Begin.

The outline for enumerating counters:

‣ Call NVPW_MetricsContext_GetCounterNames_Begin to allow Perfworks to
expand the metric names.

‣ Copy the string names from the output buffer.
‣ Call NVPW_MetricsContext_GetCounterNames_End to free the string names

allocated by Perfworks by _Begin.
‣ Generate metric names from the counter names, using the formulaic expansions

described in Metric Entities.

Ratios and throughputs follow a similar pattern, with
NVPW_MetricsContext_GetRatioNames_Begin and
NVPW_MetricsContext_GetThroughputNames_Begin.

To programmatically determine the constituents of a Throughput metric:

‣ Call NVPW_MetricsContext_GetThroughputBreakdown_Begin + _End to
retrieve the list of counters and sub-throughputs

‣ For each sub-throughput, recursively repeat the procedure of querying counters and
sub-throughputs, until none remain.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 58

Configuration Workflow

Configuration is the process of specifying the metrics that will be collected and how
those metrics should be collected. The inputs for this phase are the metric names
and metric collection properties. The output for this phase is a ConfigImage and a
CounterDataPrefix Image.

Refer to file Metric.cpp used by the userrange_profiling sample.

The outline for configuring metrics:

‣ As input, take a list of metric names.
‣ For each metric, call NVPW_MetricsContext_GetMetricProperties_Begin to

query its raw metric dependencies.
‣ For each raw metric dependency in

NVPW_MetricsContext_GetMetricProperties_Begin_Params::ppRawMetricDependencies:

‣ Create an NVPA_RawMetricRequest with keepInstances=true and
isolated=true

‣ Pass the NVPA_RawMetricRequest to NVPW_RawMetricsConfig_AddMetrics
for the ConfigImage.

‣ Pass the NVPA_RawMetricRequest to
NVPW_CounterDataBuilder_AddMetrics for the CounterDataPrefix.

‣ Generate binary configuration "images" (file format in memory):

‣ ConfigImage from NVPW_RawMetricsConfig_GetConfigImage
‣ CounterDataPrefix from

NVPW_CounterDataBuilder_GetCounterDataPrefix

Metric Evaluation

Metric Evaluation is the process of forming metrics from the counters stored in the
CounterData image.

Refer to file Eval.cpp used by the userrange_profiling sample.

The outline for configuring metrics:

‣ As input, take the same list of metric names as used during configuration.
‣ As input, take a CounterDataImage collected on a target device.
‣ Query the number of ranges collected via NVPW_CounterData_GetNumRanges.
‣ For each range:

‣ Call NVPW_Profiler_CounterData_GetRangeDescriptions to retrieve the
range's description, originally set by cuptiProfilerPushRange.

‣ Call NVPW_MetricsContext_SetCounterData to set the current range for
evaluation on the NVPA_MetricsContext.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 59

‣ Call NVPW_MetricsContext_EvaluateToGpuValues to query an array of
numeric values corresponding to each input metric.

1.8.1. Derived metrics

Metrics Overview

The PerfWorks API comes with an advanced metrics calculation system, designed
to help you determine what happened (counters and metrics), and how close the
program reached to peak GPU performance (throughputs as a percentage). Every
counter has associated peak rates in the database, to allow computing its throughput as
a percentage.

Throughput metrics return the maximum percentage value of their
constituent counters. Constituents can be programmatically queried via
NVPW_MetricsContext_GetThroughputNames_Begin. These constituents have
been carefully selected to represent the sections of the GPU pipeline that govern peak
performance. While all counters can be converted to a %-of-peak, not all counters
are suitable for peak-performance analysis; examples of unsuitable counters include
qualified subsets of activity, and workload residency counters. Using throughput metrics
ensures meaningful and actionable analysis.

Two types of peak rates are available for every counter: burst and sustained. Burst rate
is the maximum rate reportable in a single clock cycle. Sustained rate is the maximum
rate achievable over an infinitely long measurement period, for "typical" operations.
For many counters, burst == sustained. Since the burst rate cannot be exceeded,
percentages of burst rate will always be less than 100%. Percentages of sustained rate can
occasionally exceed 100% in edge cases.

Metrics Entities

The Metrics layer has 3 major types of entities:

‣ Metrics : these are calculated quantities, with the following static properties:

‣ Description string.
‣ Dimensional Units : a list of ('name', exponent) in the style of dimensional

analysis. Example string representation: pixels / gpc_clk.
‣ Raw Metric dependencies : the list of raw metrics that must be collected, in

order to evaluate the metric.
‣ Every metric has the following sub-metrics built in.

.peak_burst the peak burst rate

.peak_sustained the peak sustained rate

https://en.wikipedia.org/wiki/Dimensional_analysis
https://en.wikipedia.org/wiki/Dimensional_analysis

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 60

.per_active_cycle the number of operations per
unit active cycle

.per_elapsed_cycle the number of operations per
unit elapsed cycle

.per_region_cycle the number of operations per
user-specified "range" cycle

.per_frame_cycle the number of operations per
user-specified "frame" cycle

.per_second the number of operations per
user-specified "frame" cycle

.pct_of_peak_burst_active % of peak burst rate achieved
during unit active cycles

.pct_of_peak_burst_elapsed % of peak burst rate achieved
during unit elapsed cycles

.pct_of_peak_burst_region % of peak burst rate achieved
over a user-specified "range"
time

.pct_of_peak_burst_frame % of peak burst rate achieved
over a user-specified "frame"
time

.pct_of_peak_sustained_active % of peak sustained rate
achieved during unit active
cycles

.pct_of_peak_sustained_elapsed% of peak sustained rate
achieved during unit elapsed
cycles

.pct_of_peak_sustained_region % of peak sustained rate
achieved over a user-specified
"range" time

.pct_of_peak_sustained_frame % of peak sustained rate
achieved over a user-specified
"frame" time

‣ Counters : may be either a raw counter from the GPU, or a calculated counter value.
Every counter has 4 sub-metrics under it:

.sum The sum of counter values across all
unit instances.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 61

.avg The average counter value across all
unit instances.

.min The minimum counter value across
all unit instances.

.max The maximum counter value across
all unit instances.

‣ Ratios : . Every counter has 2 sub-metrics under it:

.pct The value expressed as a percentage.

.ratio The value expressed as a ratio.

‣ Throughputs : a family of percentage metrics that indicate how close a portion of the
GPU reached to peak rate. Every throughput has the following sub-metrics:

.pct_of_peak_burst_active % of peak burst rate achieved
during unit active cycles

.pct_of_peak_burst_elapsed % of peak burst rate achieved
during unit elapsed cycles

.pct_of_peak_burst_region % of peak burst rate achieved over a
user-specified "range" time

.pct_of_peak_burst_frame % of peak burst rate achieved over a
user-specified "frame" time

.pct_of_peak_sustained_active % of peak sustained rate achieved
during unit active cycles

.pct_of_peak_sustained_elapsed % of peak sustained rate achieved
during unit elapsed cycles

.pct_of_peak_sustained_region % of peak sustained rate achieved
over a user-specified "range" time

.pct_of_peak_sustained_frame % of peak sustained rate achieved
over a user-specified "frame" time

At the configuration step, you must specify metric names. Counters, ratios, and
throughputs are not directly schedulable. The sum,avg,min,max sub-metrics for
counters are also called "rollups".

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 62

Metrics Examples

non-metric names -- *not* directly evaluable
sm__inst_executed # counter
smsp__average_warp_latency # ratio
sm__throughput # throughput

a counter's four sub-metrics -- all evaluable
sm__inst_executed.sum # metric
sm__inst_executed.avg # metric
sm__inst_executed.min # metric
sm__inst_executed.max # metric

all names below are metrics -- all evaluable
l1tex__data_bank_conflicts_pipe_lsu.sum
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_burst
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_sustained
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_active
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_elapsed
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_region
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_frame
l1tex__data_bank_conflicts_pipe_lsu.sum.per_second
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_burst_active
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_burst_elapsed
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_burst_region
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_burst_frame
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_active
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_elapsed
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_region
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_frame

Metrics Naming Conventions

Counters and metrics _generally_ obey the naming scheme:

‣ Unit-Level Counter :
unit__(subunit?)_(pipestage?)_quantity_(qualifiers?)

‣ Interface Counter :
unit__(subunit?)_(pipestage?)_(interface)_quantity_(qualifiers?)

‣ Unit Metric : (counter_name).(rollup_metric)
‣ Sub-Metric : (counter_name).(rollup_metric).(submetric)

where

‣ unit: A logical of physical unit of the GPU
‣ subunit: The subunit within the unit where the counter was measured. Sometimes

this is a pipeline mode instead.
‣ pipestage: The pipeline stage within the subunit where the counter was measured.
‣ quantity: What is being measured. Generally matches the "dimensional units".
‣ qualifiers: Any additional predicates or filters applied to the counter. Often, an

unqualified counter can be broken down into several qualified sub-components.
‣ interface: Of the form sender2receiver, where sender is the source-unit and

receiver is the destination-unit.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 63

‣ rollup_metric: One of sum,avg,min,max.
‣ submetric: refer to section Metric Entities

Components are not always present. Most top-level counters have no qualifiers. Subunit
and pipestage may be absent where irrelevant, or there may be many subunit specifiers
for detailed counters.

Cycle Metrics

Counters using the term cycles in the name report the number of cycles in the unit's
clock domain. Unit-level cycle metrics include:

‣ unit__cycles_elapsed : The number of cycles within a range. The cycles'
DimUnits are specific to the unit's clock domain.

‣ unit__cycles_active : The number of cycles where the unit was processing
data.

‣ unit__cycles_stalled : The number of cycles where the unit was unable to
process new data because its output interface was blocked.

‣ unit__cycles_idle : The number of cycles where the unit was idle.

Interface-level cycle counters are often (not always) available in the following variations:

‣ unit__(interface)_active : Cycles where data was transferred from source-
unit to destination-unit.

‣ unit__(interface)_stalled : Cycles where the source-unit had data, but the
destination-unit was unable to accept data.

1.8.2. Raw Metrics
The raw metrics layer contains a list of low-level GPU counters, and the "scheduling"
logic needed to program the hardware. The binary output files (ConfigImage and
CounterDataPrefix) can be generated offline, stored on disk, and used on any
compatible GPU. They do not need to be generated on a machine where a GPU is
available.

Refer to Metrics Configuration to see where Raw Metrics fit into the overall data flow of
the profiler.

1.8.3. Metrics Mapping Table
The table below lists the CUPTI metrics for devices with compute capability 7.0. For
each CUPTI metric the closest equivalent Perfworks metric or formula is given. If no
equivalent Perfworks metric is available the column is left blank. Note that there can
be some difference in the metric values between the CUPTI metric and the Perfworks
metrics.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 64

Table 5 Metrics Mapping Table from CUPTI to Perfworks for Compute
Capability 7.0

CUPTI Metric Perfworks Metric or Formula

achieved_occupancy sm__warps_active.avg.pct_of_peak_sustained_active

atomic_transactions l1tex__t_set_accesses_pipe_lsu_mem_global_op_atom.sum +
l1tex__t_set_accesses_pipe_lsu_mem_global_op_red.sum +
l1tex__t_set_accesses_pipe_tex_mem_surface_op_atom.sum +
l1tex__t_set_accesses_pipe_tex_mem_surface_op_red.sum

atomic_transactions_per_request

branch_efficiency

cf_executed smsp__inst_executed_pipe_cbu.sum +
smsp__inst_executed_pipe_adu.sum

cf_fu_utilization

cf_issued

double_precision_fu_utilization smsp__inst_executed_pipe_fp64.avg.pct_of_peak_sustained_active

dram_read_bytes dram__bytes_read.sum

dram_read_throughput dram__bytes_read.sum.per_second

dram_read_transactions dram__sectors_read.sum

dram_utilization dram__throughput.avg.pct_of_peak_sustained_elapsed

dram_write_bytes dram__bytes_write.sum

dram_write_throughput dram__bytes_write.sum.per_second

dram_write_transactions dram__sectors_write.sum

eligible_warps_per_cycle smsp__warps_eligible.sum.per_cycle_active

flop_count_dp smsp__sass_thread_inst_executed_op_dadd_pred_on.sum +
smsp__sass_thread_inst_executed_op_dmul_pred_on.sum +
smsp__sass_thread_inst_executed_op_dfma_pred_on.sum

flop_count_dp_add smsp__sass_thread_inst_executed_op_dadd_pred_on.sum

flop_count_dp_fma smsp__sass_thread_inst_executed_op_dfma_pred_on.sum

flop_count_dp_mul smsp__sass_thread_inst_executed_op_dmul_pred_on.sum

flop_count_hp smsp__sass_thread_inst_executed_op_hadd_pred_on.sum +
smsp__sass_thread_inst_executed_op_hmul_pred_on.sum +
smsp__sass_thread_inst_executed_op_hfma_pred_on.sum

flop_count_hp_add smsp__sass_thread_inst_executed_op_hadd_pred_on.sum

flop_count_hp_fma smsp__sass_thread_inst_executed_op_hfma_pred_on.sum

flop_count_hp_mul smsp__sass_thread_inst_executed_op_hmul_pred_on.sum

flop_count_sp smsp__sass_thread_inst_executed_op_fadd_pred_on.sum +
smsp__sass_thread_inst_executed_op_fmul_pred_on.sum +
smsp__sass_thread_inst_executed_op_ffma_pred_on.sum

flop_count_sp_add smsp__sass_thread_inst_executed_op_fadd_pred_on.sum

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 65

CUPTI Metric Perfworks Metric or Formula

flop_count_sp_fma smsp__sass_thread_inst_executed_op_ffma_pred_on.sum

flop_count_sp_mul smsp__sass_thread_inst_executed_op_fmul_pred_on.sum

flop_count_sp_special smsp__sass_thread_inst_executed_op_mufu_pred_on.sum

flop_dp_efficiency

flop_hp_efficiency

flop_sp_efficiency

gld_efficiency

gld_requested_throughput

gld_throughput l1tex__t_bytes_pipe_lsu_mem_global_op_ld.sum.per_second

gld_transactions l1tex__t_sectors_pipe_lsu_mem_global_op_ld.sum

gld_transactions_per_request

global_atomic_requests l1tex__t_requests_pipe_lsu_mem_global_op_atom.sum

global_hit_rate l1tex__t_sectors_pipe_lsu_mem_global_op_{op}_lookup_hit.sum /
l1tex__t_sectors_pipe_lsu_mem_global_op_{op}.sum

global_load_requests l1tex__t_requests_pipe_lsu_mem_global_op_ld.sum

global_reduction_requests l1tex__t_requests_pipe_lsu_mem_global_op_red.sum

global_store_requests l1tex__t_requests_pipe_lsu_mem_global_op_st.sum

gst_efficiency

gst_requested_throughput

gst_throughput l1tex__t_bytes_pipe_lsu_mem_global_op_st.sum.per_second

gst_transactions l1tex__t_bytes_pipe_lsu_mem_global_op_st.sum

gst_transactions_per_request

half_precision_fu_utilization smsp__inst_executed_pipe_fp16.sum

inst_bit_convert smsp__sass_thread_inst_executed_op_conversion_pred_on.sum

inst_compute_ld_st smsp__sass_thread_inst_executed_op_memory_pred_on.sum

inst_control smsp__sass_thread_inst_executed_op_control_pred_on.sum

inst_executed smsp__inst_executed.sum

inst_executed_global_atomics

inst_executed_global_loads smsp__inst_executed_op_global_ld.sum

inst_executed_global_reductions smsp__inst_executed_op_global_red.sum

inst_executed_global_stores smsp__inst_executed_op_global_st.sum

inst_executed_local_loads smsp__inst_executed_op_local_ld.sum

inst_executed_local_stores smsp__inst_executed_op_local_st.sum

inst_executed_shared_atomics smsp__inst_executed_op_shared_atom.sum +
smsp__inst_executed_op_shared_atom_dot_alu.sum +
smsp__inst_executed_op_shared_atom_dot_cas.sum

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 66

CUPTI Metric Perfworks Metric or Formula

inst_executed_shared_loads smsp__inst_executed_op_shared_ld.sum

inst_executed_shared_stores smsp__inst_executed_op_shared_st.sum

inst_executed_surface_atomics smsp__inst_executed_op_surface_atom.sum

inst_executed_surface_loads smsp__inst_executed_op_surface_ld.sum +
smsp__inst_executed_op_shared_atom_dot_alu.sum +
smsp__inst_executed_op_shared_atom_dot_cas.sum

inst_executed_surface_reductions smsp__inst_executed_op_surface_red.sum

inst_executed_surface_stores smsp__inst_executed_op_surface_st.sum

inst_executed_tex_ops smsp__inst_executed_op_texture.sum

inst_fp_16 smsp__sass_thread_inst_executed_op_fp16_pred_on.sum

inst_fp_32 smsp__sass_thread_inst_executed_op_fp32_pred_on.sum

inst_fp_64 smsp__sass_thread_inst_executed_op_fp64_pred_on.sum

inst_integer smsp__sass_thread_inst_executed_op_integer_pred_on.sum

inst_inter_thread_communication smsp__sass_thread_inst_executed_op_inter_thread_communication_pred_on.sum

inst_issued smsp__inst_issued.sum

inst_misc smsp__sass_thread_inst_executed_op_misc_pred_on.sum

inst_per_warp smsp__average_inst_executed_per_warp.ratio

inst_replay_overhead

ipc smsp__inst_executed.avg.per_cycle_active

issue_slot_utilization smsp__issue_active.avg.pct_of_peak_sustained_active

issue_slots smsp__inst_issued.sum

issued_ipc smsp__inst_issued.avg.per_cycle_active

l1_sm_lg_utilization l1tex__lsu_writeback_active.sum

l2_atomic_throughput lts__t_sectors_srcunit_l1_op_atom.sum.per_second

l2_atomic_transactions lts__t_sectors_srcunit_l1_op_atom.sum

l2_global_atomic_store_bytes lts__t_bytes_equiv_l1sectormiss_pipe_lsu_mem_global_op_atom.sum

l2_global_load_bytes lts__t_bytes_equiv_l1sectormiss_pipe_lsu_mem_global_op_ld.sum

l2_local_global_store_bytes lts__t_bytes_equiv_l1sectormiss_pipe_lsu_mem_global_op_st.sum

l2_local_load_bytes lts__t_bytes_equiv_l1sectormiss_pipe_lsu_mem_global_op_ld.sum

l2_read_throughput lts__t_sectors_op_read.sum.per_second

l2_read_transactions lts__t_sectors_op_read.sum

l2_surface_load_bytes lts__t_bytes_equiv_l1sectormiss_pipe_tex_mem_surface_op_ld.sum

l2_surface_store_bytes lts__t_bytes_equiv_l1sectormiss_pipe_lsu_mem_surface_op_st.sum

l2_tex_hit_rate lts__t_sector_hit_rate.pct

l2_tex_read_hit_rate lts__t_sector_op_read_hit_rate.pct

l2_tex_read_throughput lts__t_sectors_srcunit_tex_op_read.sum.per_second

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 67

CUPTI Metric Perfworks Metric or Formula

l2_tex_read_transactions lts__t_sectors_srcunit_tex_op_read.sum

l2_tex_write_hit_rate lts__t_sector_op_write_hit_rate.pct

l2_tex_write_throughput lts__t_sectors_srcunit_tex_op_read.sum.per_second

l2_tex_write_transactions lts__t_sectors_srcunit_tex_op_read.sum

l2_utilization lts__t_sectors.avg.pct_of_peak_sustained_elapsed

l2_write_throughput lts__t_sectors_op_write.sum.per_second

l2_write_transactions lts__t_sectors_op_write.sum

ldst_executed

ldst_fu_utilization smsp__inst_executed_pipe_lsu.avg.pct_of_peak_sustained_active

ldst_issued

local_hit_rate

local_load_requests l1tex__t_requests_pipe_lsu_mem_local_op_ld.sum

local_load_throughput l1tex__t_bytes_pipe_lsu_mem_local_op_ld.sum.per_second

local_load_transactions l1tex__t_sectors_pipe_lsu_mem_local_op_ld.sum

local_load_transactions_per_request

local_memory_overhead

local_store_requests l1tex__t_requests_pipe_lsu_mem_local_op_st.sum

local_store_throughput l1tex__t_sectors_pipe_lsu_mem_local_op_st.sum.per_second

local_store_transactions l1tex__t_sectors_pipe_lsu_mem_local_op_st.sum

local_store_transactions_per_request

nvlink_data_receive_efficiency

nvlink_data_transmission_efficiency

nvlink_overhead_data_received

nvlink_overhead_data_transmitted

nvlink_receive_throughput

nvlink_total_data_received

nvlink_total_data_transmitted

nvlink_total_nratom_data_transmitted

nvlink_total_ratom_data_transmitted

nvlink_total_response_data_received

nvlink_total_write_data_transmitted

nvlink_transmit_throughput

nvlink_user_data_received

nvlink_user_data_transmitted

nvlink_user_nratom_data_transmitted

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 68

CUPTI Metric Perfworks Metric or Formula

nvlink_user_ratom_data_transmitted

nvlink_user_response_data_received

nvlink_user_write_data_transmitted

pcie_total_data_received

pcie_total_data_transmitted

shared_efficiency

shared_load_throughput smsp__inst_executed_op_shared_ld.sum.per_second

shared_load_transactions smsp__inst_executed_op_shared_ld.sum

shared_load_transactions_per_request

shared_store_throughput smsp__inst_executed_op_shared_st.sum.per_second

shared_store_transactions smsp__inst_executed_op_shared_st.sum

shared_store_transactions_per_request

shared_utilization smsp__inst_executed_op_shared_ld.avg.pct_of_peak_sustained_elapsed
+
smsp__inst_executed_op_shared_st.avg.pct_of_peak_sustained_elapsed

single_precision_fu_utilization smsp__pipe_fma_cycles_active.avg.pct_of_peak_sustained_active

sm_efficiency smsp__cycles_active.avg.pct_of_peak_sustained_elapsed

sm_tex_utilization l1tex__texin_sm2tex_req_cycles_active.avg.pct_of_peak_sustained_elapsed

special_fu_utilization smsp__inst_executed_pipe_xu.avg.pct_of_peak_sustained_active

stall_constant_memory_dependencysmsp__warp_issue_stalled_imc_miss_per_warp_active.pct

stall_exec_dependency smsp__warp_issue_stalled_short_scoreboard_miss_per_warp_active.pct

stall_inst_fetch smsp__warp_issue_stalled_no_instruction_miss_per_warp_active.pct

stall_memory_dependency smsp__warp_issue_stalled_long_scoreboard_miss_per_warp_active.pct

stall_memory_throttle smsp__warp_issue_stalled_drain_miss_per_warp_active.pct

stall_not_selected smsp__warp_issue_stalled_not_selected_miss_per_warp_active.pct

stall_other smsp__warp_issue_stalled_misc_miss_per_warp_active.pct

stall_pipe_busy smsp__warp_issue_stalled_misc_mio_throttle_per_warp_active.pct

stall_sleeping smsp__warp_issue_stalled_misc_sleeping_per_warp_active.pct

stall_sync smsp__warp_issue_stalled_misc_membar_per_warp_active.pct

stall_texture smsp__warp_issue_stalled_misc_tex_throttle_per_warp_active.pct

surface_atomic_requests l1tex__t_requests_pipe_tex_mem_surface_op_atom.sum

surface_load_requests l1tex__t_requests_pipe_tex_mem_surface_op_ld.sum

surface_reduction_requests l1tex__t_requests_pipe_tex_mem_surface_op_red.sum

surface_store_requests l1tex__t_requests_pipe_tex_mem_surface_op_st.sum

sysmem_read_bytes

sysmem_read_throughput lts__t_sectors_aperture_sysmem_op_read.sum.per_second

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 69

CUPTI Metric Perfworks Metric or Formula

sysmem_read_transactions lts__t_sectors_aperture_sysmem_op_read.sum

sysmem_read_utilization

sysmem_utilization

sysmem_write_bytes

sysmem_write_throughput lts__t_sectors_aperture_sysmem_op_write.sum.per_second

sysmem_write_transactions lts__t_sectors_aperture_sysmem_op_write.sum

sysmem_write_utilization

tensor_precision_fu_utilization sm__pipe_tensor_cycles_active.avg.pct_of_peak_sustained_active

tex_cache_hit_rate l1tex__t_sector_hit_rate.pct

tex_cache_throughput

tex_cache_transactions l1tex__lsu_writeback_active.avg.pct_of_peak_sustained_active +
l1tex__tex_writeback_active.avg.pct_of_peak_sustained_active

tex_fu_utilization smsp__inst_executed_pipe_tex.avg.pct_of_peak_sustained_active

tex_sm_tex_utilization l1tex__f_tex2sm_cycles_active.avg.pct_of_peak_sustained_elapsed

tex_sm_utilization sm__mio2rf_writeback_active.avg.pct_of_peak_sustained_elapsed

tex_utilization

texture_load_requests l1tex__t_requests_pipe_tex_mem_texture.sum

warp_execution_efficiency smsp__thread_inst_executed_per_inst_executed.ratio

warp_nonpred_execution_efficiencysmsp__thread_inst_executed_per_inst_executed.pct

1.9. Samples
The CUPTI installation includes several samples that demonstrate the use of the CUPTI
APIs. The samples are:
activity_trace_async

This sample shows how to collect a trace of CPU and GPU activity using the new
asynchronous activity buffer APIs.

callback_event
This sample shows how to use both the callback and event APIs to record the events
that occur during the execution of a simple kernel. The sample shows the required
ordering for synchronization, and for event group enabling, disabling, and reading.

callback_metric
This sample shows how to use both the callback and metric APIs to record the
metric's events during the execution of a simple kernel, and then use those events to
calculate the metric value.

callback_timestamp
This sample shows how to use the callback API to record a trace of API start and stop
times.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 70

cupti_query
This sample shows how to query CUDA-enabled devices for their event domains,
events, and metrics.

event_sampling
This sample shows how to use the event APIs to sample events using a separate host
thread.

event_multi_gpu
This sample shows how to use the CUPTI event and CUDA APIs to sample events
on a setup with multiple GPUs. The sample shows the required ordering for
synchronization, and for event group enabling, disabling, and reading.

sass_source_map
This sample shows how to generate CUpti_ActivityInstructionExecution records and
how to map SASS assembly instructions to CUDA C source.

unified_memory
This sample shows how to collect information about page transfers for unified
memory.

pc_sampling
This sample shows how to collect PC Sampling profiling information for a kernel.

nvlink_bandwidth
This sample shows how to collect NVLink topology and NVLink throughput metrics
in continuous mode.

openacc_trace
This sample shows how to use CUPTI APIs for OpenACC data collection.

extensions
This includes utilities used in some of the samples.

autorange_profiling
This sample shows how to use new CUPTI profiling APIs to collect metrics in
autorange mode.

userrange_profiling
This sample shows how to use new CUPTI profiling APIs to collect metrics in user
specified range mode.

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 71

Chapter 2.
LIMITATIONS

The following are known issues with the current release.

‣ On Windows, CUPTI samples and other applications using the CUPTI APIs will
result in the error "cupti.dll was not found". This is due to a mismatch in the CUPTI
dynamic library name referenced in the import library "cupti.lib". To workaround
this issue rename the CUPTI dynamic library under the CUDA Toolkit directory
(default location is: "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
\v10.1\extras\CUPTI\lib64") from "cupti64_101.dll" to "cupti.dll".

‣ Profiling is not supported for devices with compute capability 7.5 and higher on
IBM POWER, Mac and Tegra platforms. This includes events and metrics APIs from
headers cupti_events.h and cupti_metrics.h respectively, PC sampling, SASS source
level analysis and NVLink throughput metrics.

‣ Profiling results might be inconsistent when auto boost is enabled. Profiler
tries to disable auto boost by default. But it might fail to do so in some
conditions and profiling will continue and results will be inconsistent. API
cuptiGetAutoBoostState() can be used to query the auto boost state of the
device. This API returns error CUPTI_ERROR_NOT_SUPPORTED on devices that
don't support auto boost. Note that auto boost is supported only on certain Tesla
devices with compute capability 3.0 and higher.

‣ CUPTI doesn't populate the activity structures which are deprecated, instead the
newer version of the activity structure is filled with the information.

‣ While collecting events in continuous mode, event reporting may be delayed i.e.
event values may be returned by a later call to readEvent(s) API and the event
values for the last readEvent(s) API may get lost.

‣ When profiling events, it is possible that the domain instance that gets
profiled gives event value 0 due to absence of workload on the domain
instance since CUPTI profiles one instance of the domain by default. To
profile all instances of the domain, user can set event group attribute
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES through API
cuptiEventGroupSetAttribute().

Limitations

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 72

‣ Starting CUDA Toolkit 9.0, CUPTI doesn't support CUDA Dynamic Parallelism
(CDP) kernel launch tracing and source level metrics for devices with compute
capability 7.0 and later.

‣ CUPTI doesn't support tracing and profiling on virtualized GPUs.
‣ Profiling results might be incorrect for CUDA applications compiled with

nvcc version older than 9.0 for devices with compute capability 6.0 and 6.1.
Profiling session will continue and CUPTI will notify it using error code
CUPTI_ERROR_CUDA_COMPILER_NOT_COMPATIBLE. It is advised to recompile the
application code with nvcc version 9.0 or later. Ignore this warning if code is already
compiled with the recommended nvcc version

‣ Because of the low resolution of the timer on Windows, the start and end
timestamps can be same for activities having short execution duration on Windows.

‣ Profiling (event and metric collection) is not supported for multidevice
cooperative kernels, that is, kernels launched by using the API
functions cudaLaunchCooperativeKernelMultiDevice or
cuLaunchCooperativeKernelMultiDevice.

‣ The application which calls CUPTI APIs cannot be used with Nvidia tools like
nvprof, Nvidia Visual Profiler, Nsight Compute, Nsight Systems,
Nvidia Nsight Visual Studio Edition, cuda-gdb and cuda-memcheck.

‣ Profiling is not supported for CUDA kernel nodes launched by a CUDA Graph.
‣ CUDA runtime and driver API callbacks for kernel launch are not issued when the

stream is in the capture mode.
‣ Tracing of a CUDA Graph may change its performance characteristics.

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 73

Chapter 3.
CHANGELOG

CUPTI changes in CUDA 10.1

CUPTI contains below changes as part of the CUDA Toolkit 10.1 release.

‣ This release is focused on bug fixes and performance improvements.
‣ Event collection mode CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS is now

supported on all device classes including Geforce and Quadro.
‣ Support for NVTX string registration API nvtxDomainRegisterStringA().
‣ Added enum CUpti_PcieGen to list PCIE generations.

CUPTI changes in CUDA 10.0

CUPTI contains below changes as part of the CUDA Toolkit 10.0 release.

‣ Added tracing support for devices with compute capability 7.5.
‣ A new set of metric APIs are added for devices with compute capability 7.0 and

higher. These provide low and deterministic profiling overhead on the target
system. These APIs are currently supported only on Linux x86 64-bit and Windows
64-bit platforms. Refer to the CUPTI web page for documentation and details to
download the package with support for these new APIs. Note that both the old
and new metric APIs are supported for compute capability 7.0. This is to enable
transition of code to the new metric APIs. But one cannot mix the usage of the old
and new metric APIs.

‣ CUPTI supports profiling of OpenMP applications. OpenMP profiling information
is provided in the form of new activity records CUpti_ActivityOpenMp. New API
cuptiOpenMpInitialize is used to initialize profiling for supported OpenMP
runtimes.

‣ Activity record for kernel CUpti_ActivityKernel4 provides shared memory size
set by the CUDA driver.

‣ Tracing support for CUDA kernels, memcpy and memset nodes launched by a
CUDA Graph.

https://developer.nvidia.com/cupti

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 74

‣ Added support for resource callbacks for resources associated with the CUDA
Graph. Refer enum CUpti_CallbackIdResource for new callback IDs.

CUPTI changes in CUDA 9.2

CUPTI contains below changes as part of the CUDA Toolkit 9.2 release.

‣ Added support to query PCI devices information which can be used to construct
the PCIE topology. See activity kind CUPTI_ACTIVITY_KIND_PCIE and related
activity record CUpti_ActivityPcie.

‣ To view and analyze bandwidth of memory transfers over PCIe topologies, new
set of metrics to collect total data bytes transmitted and recieved through PCIe are
added. Those give accumulated count for all devices in the system. These metrics are
collected at the device level for the entire application. And those are made available
for devices with compute capability 5.2 and higher.

‣ CUPTI added support for new metrics:

‣ Instruction executed for different types of load and store
‣ Total number of cached global/local load requests from SM to texture cache
‣ Global atomic/non-atomic/reduction bytes written to L2 cache from texture

cache
‣ Surface atomic/non-atomic/reduction bytes written to L2 cache from texture

cache
‣ Hit rate at L2 cache for all requests from texture cache
‣ Device memory (DRAM) read and write bytes
‣ The utilization level of the multiprocessor function units that execute tensor core

instructions for devices with compute capability 7.0
‣ A new attribute CUPTI_EVENT_ATTR_PROFILING_SCOPE is added under enum

CUpti_EventAttribute to query the profiling scope of a event. Profiling scope
indicates if the event can be collected at the context level or device level or both. See
Enum CUpti_EventProfilingScope for avaiable profiling scopes.

‣ A new error code CUPTI_ERROR_VIRTUALIZED_DEVICE_NOT_SUPPORTED is
added to indicate that tracing and profiling on virtualized GPU is not supported.

CUPTI changes in CUDA 9.1

List of changes done as part of the CUDA Toolkit 9.1 release.

‣ Added a field for correlation ID in the activity record CUpti_ActivityStream.

CUPTI changes in CUDA 9.0

List of changes done as part of the CUDA Toolkit 9.0 release.

‣ CUPTI extends tracing and profiling support for devices with compute capability
7.0.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 75

‣ Usage of compute device memory can be tracked through CUPTI.
A new activity record CUpti_ActivityMemory and activity kind
CUPTI_ACTIVITY_KIND_MEMORY are added to track the allocation and freeing
of memory. This activity record includes fields like virtual base address, size, PC
(program counter), timestamps for memory allocation and free calls.

‣ Unified memory profiling adds new events for thrashing, throttling, remote
map and device-to-device migration on 64 bit Linux platforms. New events are
added under enum CUpti_ActivityUnifiedMemoryCounterKind. Enum
CUpti_ActivityUnifiedMemoryRemoteMapCause lists possible causes for
remote map events.

‣ PC sampling supports wide range of sampling periods ranging from
2^5 cycles to 2^31 cycles per sample. This can be controlled through
new field samplingPeriod2 in the PC sampling configuration struct
CUpti_ActivityPCSamplingConfig.

‣ Added API cuptiDeviceSupported() to check support for a compute device.
‣ Activity record CUpti_ActivityKernel3 for kernel execution has been

deprecated and replaced by new activity record CUpti_ActivityKernel4.
New record gives information about queued and submit timestamps which
can help to determine software and hardware latencies associated with
the kernel launch. These timestamps are not collected by default. Use API
cuptiActivityEnableLatencyTimestamps() to enable collection. New field
launchType of type CUpti_ActivityLaunchType can be used to determine if it
is a cooperative CUDA kernel launch.

‣ Activity record CUpti_ActivityPCSampling2 for PC sampling has been
deprecated and replaced by new activity record CUpti_ActivityPCSampling3.
New record accomodates 64-bit PC Offset supported on devices of compute
capability 7.0 and higher.

‣ Activity record CUpti_ActivityNvLink for NVLink attributes has been
deprecated and replaced by new activity record CUpti_ActivityNvLink2. New
record accomodates increased port numbers between two compute devices.

‣ Activity record CUpti_ActivityGlobalAccess2 for source level
global accesses has been deprecated and replaced by new activity record
CUpti_ActivityGlobalAccess3. New record accomodates 64-bit PC Offset
supported on devices of compute capability 7.0 and higher.

‣ New attributes CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE
and CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_LIMIT are added
in the activity attribute enum CUpti_ActivityAttribute to set and get the
profiling semaphore pool size and the pool limit.

CUPTI changes in CUDA 8.0

List of changes done as part of the CUDA Toolkit 8.0 release.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 76

‣ Sampling of the program counter (PC) is enhanced to point out the true
latency issues, it indicates if the stall reasons for warps are actually causing
stalls in the issue pipeline. Field latencySamples of new activity record
CUpti_ActivityPCSampling2 provides true latency samples. This field is valid
for devices with compute capability 6.0 and higher. See section PC Sampling for
more details.

‣ Support for NVLink topology information such as the pair of devices connected via
NVLink, peak bandwidth, memory access permissions etc is provided through new
activity record CUpti_ActivityNvLink. NVLink performance metrics for data
transmitted/received, transmit/receive throughput and respective header overhead
for each physical link. See section NVLink for more details.

‣ CUPTI supports profiling of OpenACC applications. OpenACC
profiling information is provided in the form of new activity records
CUpti_ActivityOpenAccData, CUpti_ActivityOpenAccLaunch and
CUpti_ActivityOpenAccOther. This aids in correlating OpenACC constructs on
the CPU with the corresponding activity taking place on the GPU, and mapping it
back to the source code. New API cuptiOpenACCInitialize is used to initialize
profiling for supported OpenACC runtimes. See section OpenACC for more details.

‣ Unified memory profiling provides GPU page fault events on
devices with compute capability 6.0 and 64 bit Linux platforms.
Enum CUpti_ActivityUnifiedMemoryAccessType lists
memory access types for GPU page fault events and enum
CUpti_ActivityUnifiedMemoryMigrationCause lists migration causes for
data transfer events.

‣ Unified Memory profiling support is extended to Mac platform.
‣ Support for 16-bit floating point (FP16) data format profiling. New metrics

inst_fp_16, flop_count_hp_add, flop_count_hp_mul, flop_count_hp_fma,
flop_count_hp, flop_hp_efficiency, half_precision_fu_utilization are
supported. Peak FP16 flops per cycle for device can be queried using
the enum CUPTI_DEVICE_ATTR_FLOP_HP_PER_CYCLE added to
CUpti_DeviceAttribute.

‣ Added new activity kinds CUPTI_ACTIVITY_KIND_SYNCHRONIZATION,
CUPTI_ACTIVITY_KIND_STREAM and CUPTI_ACTIVITY_KIND_CUDA_EVENT,
to support the tracing of CUDA synchronization constructs such as context,
stream and CUDA event synchronization. Synchronization details are provided
in the form of new activity record CUpti_ActivitySynchronization. Enum
CUpti_ActivitySynchronizationType lists different types of CUDA
synchronization constructs.

‣ APIs cuptiSetThreadIdType()/cuptiGetThreadIdType() to set/get
the mechanism used to fetch the thread-id used in CUPTI records. Enum
CUpti_ActivityThreadIdType lists all supported mechanisms.

‣ Added API cuptiComputeCapabilitySupported() to check the support for a
specific compute capability by the CUPTI.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 77

‣ Added support to establish correlation between an external API
(such as OpenACC, OpenMP) and CUPTI API activity records.
APIs cuptiActivityPushExternalCorrelationId() and
cuptiActivityPopExternalCorrelationId() should be used to push
and pop external correlation ids for the calling thread. Generated records of type
CUpti_ActivityExternalCorrelation contain both external and CUPTI
assigned correlation ids.

‣ Added containers to store the information of events and metrics in the
form of activity records CUpti_ActivityInstantaneousEvent,
CUpti_ActivityInstantaneousEventInstance,
CUpti_ActivityInstantaneousMetric and
CUpti_ActivityInstantaneousMetricInstance. These activity records are
not produced by the CUPTI, these are included for completeness and ease-of-use.
Profilers built on top of CUPTI that sample events may choose to use these records
to store the collected event data.

‣ Support for domains and annotation of synchronization objects
added in NVTX v2. New activity record CUpti_ActivityMarker2
and enums to indicate various stages of synchronization object
i.e. CUPTI_ACTIVITY_FLAG_MARKER_SYNC_ACQUIRE,
CUPTI_ACTIVITY_FLAG_MARKER_SYNC_ACQUIRE_SUCCESS,
CUPTI_ACTIVITY_FLAG_MARKER_SYNC_ACQUIRE_FAILED and
CUPTI_ACTIVITY_FLAG_MARKER_SYNC_RELEASE are added.

‣ Unused field runtimeCorrelationId of the activity record
CUpti_ActivityMemset is broken into two fields flags and
memoryKind to indicate the asynchronous behaviour and the kind of
the memory used for the memset operation. It is supported by the new
flag CUPTI_ACTIVITY_FLAG_MEMSET_ASYNC added in the enum
CUpti_ActivityFlag.

‣ Added flag CUPTI_ACTIVITY_MEMORY_KIND_MANAGED in the enum
CUpti_ActivityMemoryKind to indicate managed memory.

‣ API cuptiGetStreamId has been deprecated. A new API cuptiGetStreamIdEx
is introduced to provide the stream id based on the legacy or per-thread default
stream flag.

CUPTI changes in CUDA 7.5

List of changes done as part of the CUDA Toolkit 7.5 release.

‣ Device-wide sampling of the program counter (PC) is enabled by default. This was a
preview feature in the CUDA Toolkit 7.0 release and it was not enabled by default.

‣ Ability to collect all events and metrics accurately in presence of multiple contexts
on the GPU is extended for devices with compute capability 5.x.

‣ API cuptiGetLastError is introduced to return the last error that has been
produced by any of the CUPTI API calls or the callbacks in the same host thread.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 78

‣ Unified memory profiling is supported with MPS (Multi-Process Service)
‣ Callback is provided to collect replay information after every kernel run during

kernel replay. See API cuptiKernelReplaySubscribeUpdate and callback type
CUpti_KernelReplayUpdateFunc.

‣ Added new attributes in enum CUpti_DeviceAttribute to query maximum
shared memory size for different cache preferences for a device function.

CUPTI changes in CUDA 7.0

List of changes done as part of the CUDA Toolkit 7.0 release.

‣ CUPTI supports device-wide sampling of the program counter (PC). Program
counters along with the stall reasons from all active warps are sampled at a fixed
frequency in the round robin order. Activity record CUpti_ActivityPCSampling
enabled using activity kind CUPTI_ACTIVITY_KIND_PC_SAMPLING
outputs stall reason along with PC and other related information.
Enum CUpti_ActivityPCSamplingStallReason lists all the stall
reasons. Sampling period is configurable and can be tuned using API
cuptiActivityConfigurePCSampling. This feature is available on devices with
compute capability 5.2.

‣ Added new activity record CUpti_ActivityInstructionCorrelation which
can be used to dump source locator records for all the PCs of the function.

‣ All events and metrics for devices with compute capability 3.x and 5.0 can be
collected accurately in presence of multiple contexts on the GPU. In previous
releases only some events and metrics could be collected accurately when multiple
contexts were executing on the GPU.

‣ Unified memory profiling is enhanced by providing fine grain data transfers
to and from the GPU, coupled with more accurate timestamps with
each transfer. This information is provided through new activity record
CUpti_ActivityUnifiedMemoryCounter2, deprecating old record
CUpti_ActivityUnifiedMemoryCounter.

‣ MPS tracing and profiling support is extended on multi-gpu setups.
‣ Activity record CUpti_ActivityDevice for device information has been

deprecated and replaced by new activity record CUpti_ActivityDevice2. New
record adds device UUID which can be used to uniquely identify the device across
profiler runs.

‣ Activity record CUpti_ActivityKernel2 for kernel execution has been
deprecated and replaced by new activity record CUpti_ActivityKernel3. New
record gives information about Global Partitioned Cache Configuration requested
and executed. Partitioned global caching has an impact on occupancy calculation. If
it is ON, then a CTA can only use a half SM, and thus a half of the registers available
per SM. The new fields apply for devices with compute capability 5.2 and higher.
Note that this change was done in CUDA 6.5 release with support for compute
capabilty 5.2.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 79

CUPTI changes in CUDA 6.5

List of changes done as part of the CUDA Toolkit 6.5 release.

‣ Instruction classification is done for source-correlated Instruction
Execution activity CUpti_ActivityInstructionExecution. See
CUpti_ActivityInstructionClass for instruction classes.

‣ Two new device attributes are added to the activity CUpti_DeviceAttribute:

‣ CUPTI_DEVICE_ATTR_FLOP_SP_PER_CYCLE gives peak single precision flop
per cycle for the GPU.

‣ CUPTI_DEVICE_ATTR_FLOP_DP_PER_CYCLE gives peak double precision flop
per cycle for the GPU.

‣ Two new metric properties are added:

‣ CUPTI_METRIC_PROPERTY_FLOP_SP_PER_CYCLE gives peak single precision
flop per cycle for the GPU.

‣ CUPTI_METRIC_PROPERTY_FLOP_DP_PER_CYCLE gives peak double
precision flop per cycle for the GPU.

‣ Activity record CUpti_ActivityGlobalAccess for source level global
access information has been deprecated and replaced by new activity record
CUpti_ActivityGlobalAccess2. New record additionally gives information
needed to map SASS assembly instructions to CUDA C source code. And it also
provides ideal L2 transactions count based on the access pattern.

‣ Activity record CUpti_ActivityBranch for source level branch information has
been deprecated and replaced by new activity record CUpti_ActivityBranch2.
New record additionally gives information needed to map SASS assembly
instructions to CUDA C source code.

‣ Sample sass_source_map is added to demonstrate the mapping of SASS assembly
instructions to CUDA C source code.

‣ Default event collection mode is changed to Kernel
(CUPTI_EVENT_COLLECTION_MODE_KERNEL) from Continuous
(CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS). Also Continuous mode is
supported only on Tesla devices.

‣ Profiling results might be inconsistent when auto boost is enabled. Profiler tries to
disable auto boost by default, it might fail to do so in some conditions, but profiling
will continue. A new API cuptiGetAutoBoostState is added to query the auto
boost state of the device. This API returns error CUPTI_ERROR_NOT_SUPPORTED
on devices that don't support auto boost. Note that auto boost is supported only on
certain Tesla devices from the Kepler+ family.

‣ Activity record CUpti_ActivityKernel2 for kernel execution has been
deprecated and replaced by new activity record CUpti_ActivityKernel3. New
record additionally gives information about Global Partitioned Cache Configuration
requested and executed. The new fields apply for devices with 5.2 Compute
Capability.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 80

CUPTI changes in CUDA 6.0

List of changes done as part of the CUDA Toolkit 6.0 release.

‣ Two new CUPTI activity kinds have been introduced to enable two new types of
source-correlated data collection. The Instruction Execution kind collects
SASS-level instruction execution counts, divergence data, and predication data. The
Shared Access kind collects source correlated data indication inefficient shared
memory accesses.

‣ CUPTI provides support for CUDA applications using Unified Memory. A new
activity record reports Unified Memory activity such as transfers to and from a GPU
and the number of Unified Memory related page faults.

‣ CUPTI recognized and reports the special MPS context that is used by CUDA
applications running on a system with MPS enabled.

‣ The CUpti_ActivityContext activity record CUpti_ActivityContext
has been updated to introduce a new field into the structure in a backwards
compatible manner. The 32-bit computeApiKind field was replaced with two
16 bit fields, computeApiKind and defaultStreamId. Because all valid
computeApiKind values fit within 16 bits, and because all supported CUDA
platforms are little-endian, persisted context record data read with the new structure
will have the correct value for computeApiKind and have a value of zero for
defaultStreamId. The CUPTI client is responsible for versioning the persisted
context data to recognize when the defaultStreamId field is valid.

‣ To ensure that metric values are calculated as accurately as possible, a new metric
API is introduced. Function cuptiMetricGetRequiredEventGroupSets can be
used to get the groups of events that should be collected at the same time.

‣ Execution overheads introduced by CUPTI have been dramatically decreased.
‣ The new activity buffer API introduced in CUDA Toolkit 5.5 is required. The

legacy cuptiActivityEnqueueBuffer and cuptiActivityDequeueBuffer
functions have been removed.

CUPTI changes in CUDA 5.5

List of changes done as part of CUDA Toolkit 5.5 release.

‣ Applications that use CUDA Dynamic Parallelism can be profiled using CUPTI.
Device-side kernel launches are reported using a new activity kind.

‣ Device attributes such as power usage, clocks, thermals, etc. are reported via a new
activity kind.

‣ A new activity buffer API uses callbacks to request and return buffers
of activity records. The existing cuptiActivityEnqueueBuffer and
cuptiActivityDequeueBuffer functions are still supported but are deprecated
and will be removed in a future release.

‣ The Event API supports kernel replay so that any number of events can be collected
during a single run of the application.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v10.0 | 81

‣ A new metric API cuptiMetricGetValue2 allows metric values to be calculated
for any device, even if that device is not available on the system.

‣ CUDA peer-to-peer memory copies are reported explicitly via the activity API. In
previous releases these memory copies were only partially reported.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2019 NVIDIA Corporation. All rights reserved.

This product includes software developed by the Syncro Soft SRL (http://
www.sync.ro/).

www.nvidia.com

	Table of Contents
	List of Tables
	Overview
	What's New

	Usage
	1.1. CUPTI Compatibility and Requirements
	1.2. CUPTI Initialization
	1.3. CUPTI Activity API
	1.3.1. SASS Source Correlation
	1.3.2. PC Sampling
	1.3.3. NVLink
	1.3.4. OpenACC
	1.3.5. External Correlation

	1.4. CUPTI Callback API
	1.4.1. Driver and Runtime API Callbacks
	1.4.2. Resource Callbacks
	1.4.3. Synchronization Callbacks
	1.4.4. NVIDIA Tools Extension Callbacks

	1.5. CUPTI Event API
	1.5.1. Collecting Kernel Execution Events
	1.5.2. Sampling Events

	1.6. CUPTI Metric API
	1.6.1. Metrics Reference
	1.6.1.1. Metrics for Capability 3.x
	1.6.1.2. Metrics for Capability 5.x
	1.6.1.3. Metrics for Capability 6.x
	1.6.1.4. Metrics for Capability 7.0

	1.7. CUPTI Profiling API
	1.7.1. Multi Pass Collection
	1.7.2. Range Profiling
	1.7.2.1. Auto Range
	1.7.2.2. User Range

	1.7.3. CUPTI Profiler Definitions

	1.8. Perfworks Metrics API
	1.8.1. Derived metrics
	1.8.2. Raw Metrics
	1.8.3. Metrics Mapping Table

	1.9. Samples

	Limitations
	Changelog

