#include <eiquadprog/eiquadprog-rt.hpp>
◆ RtEiquadprog()
template<int nVars, int nEqCon, int nIneqCon>
◆ ~RtEiquadprog()
template<int nVars, int nEqCon, int nIneqCon>
◆ getActiveSet()
template<int nVars, int nEqCon, int nIneqCon>
Return the active set, namely the indeces of active constraints. The first nEqCon indexes are for the equalities and are negative. The last nIneqCon indexes are for the inequalities and start from 0. Only the first q elements of the return vector are valid, where q is the size of the active set.
- Returns
- The set of indexes of the active constraints.
◆ getActiveSetSize()
template<int nVars, int nEqCon, int nIneqCon>
- Returns
- The size of the active set, namely the number of active constraints (including the equalities).
◆ getIteratios()
template<int nVars, int nEqCon, int nIneqCon>
- Returns
- The number of active-set iteratios.
◆ getLagrangeMultipliers()
template<int nVars, int nEqCon, int nIneqCon>
- Returns
- The Lagrange multipliers
◆ getMaxIter()
template<int nVars, int nEqCon, int nIneqCon>
◆ getObjValue()
template<int nVars, int nEqCon, int nIneqCon>
- Returns
- The value of the objective function.
◆ setMaxIter()
template<int nVars, int nEqCon, int nIneqCon>
◆ solve_quadprog()
template<int nVars, int nEqCon, int nIneqCon>
RtEiquadprog_status eiquadprog::solvers::RtEiquadprog< nVars, nEqCon, nIneqCon >::solve_quadprog |
( |
const typename RtMatrixX< nVars, nVars >::d & |
Hess, |
|
|
const typename RtVectorX< nVars >::d & |
g0, |
|
|
const typename RtMatrixX< nEqCon, nVars >::d & |
CE, |
|
|
const typename RtVectorX< nEqCon >::d & |
ce0, |
|
|
const typename RtMatrixX< nIneqCon, nVars >::d & |
CI, |
|
|
const typename RtVectorX< nIneqCon >::d & |
ci0, |
|
|
typename RtVectorX< nVars >::d & |
x |
|
) |
| |
solves the problem min. x' Hess x + 2 g0' x s.t. CE x + ce0 = 0 CI x + ci0 >= 0
◆ is_inverse_provided_
template<int nVars, int nEqCon, int nIneqCon>
◆ m_J
template<int nVars, int nEqCon, int nIneqCon>
The documentation for this class was generated from the following files: