Require
Bool.
Require
Sumbool.
Require
Arith.
Require
ZArith.
Require
Addr.
Require
Adist.
Require
Addec.
Require
Map.
Require
Fset.
Require
Mapaxioms.
Require
Mapiter.
Section
MapSubsetDef.
Variable
A, B : Set.
Definition
MapSubset := [m:(Map A)] [m':(Map B)]
(a:ad) (in_dom A a m)=true -> (in_dom B a m')=true.
Definition
MapSubset_1 := [m:(Map A)] [m':(Map B)]
Cases (MapSweep A [a:ad][_:A] (negb (in_dom B a m')) m) of
NONE => true
| _ => false
end.
Definition
MapSubset_2 := [m:(Map A)] [m':(Map B)]
(eqmap A (MapDomRestrBy A B m m') (M0 A)).
Lemma
MapSubset_imp_1 : (m:(Map A)) (m':(Map B))
(MapSubset m m') -> (MapSubset_1 m m')=true.
Proof
.
Unfold MapSubset MapSubset_1. Intros.
Elim (option_sum ? (MapSweep A [a:ad][_:A](negb (in_dom B a m')) m)).
Intro H0. Elim H0. Intro r. Elim r. Intros a y H1. Cut (negb (in_dom B a m'))=true.
Intro. Cut (in_dom A a m)=false. Intro. Unfold in_dom in H3.
Rewrite (MapSweep_semantics_2 ? ? m a y H1) in H3. Discriminate H3.
Elim (sumbool_of_bool (in_dom A a m)). Intro H3. Rewrite (H a H3) in H2. Discriminate H2.
Trivial.
Exact (MapSweep_semantics_1 ? ? m a y H1).
Intro H0. Rewrite H0. Reflexivity.
Qed
.
Lemma
MapSubset_1_imp : (m:(Map A)) (m':(Map B))
(MapSubset_1 m m')=true -> (MapSubset m m').
Proof
.
Unfold MapSubset MapSubset_1. Unfold 2 in_dom. Intros. Elim (option_sum ? (MapGet A m a)).
Intro H1. Elim H1. Intros y H2.
Elim (option_sum ? (MapSweep A [a:ad][_:A](negb (in_dom B a m')) m)). Intro H3.
Elim H3. Intro r. Elim r. Intros a' y' H4. Rewrite H4 in H. Discriminate H.
Intro H3. Cut (negb (in_dom B a m'))=false. Intro. Rewrite (negb_intro (in_dom B a m')).
Rewrite H4. Reflexivity.
Exact (MapSweep_semantics_3 ? ? m H3 a y H2).
Intro H1. Rewrite H1 in H0. Discriminate H0.
Qed
.
Lemma
map_dom_empty_1 :
(m:(Map A)) (eqmap A m (M0 A)) -> (a:ad) (in_dom ? a m)=false.
Proof
.
Unfold eqmap eqm in_dom. Intros. Rewrite (H a). Reflexivity.
Qed
.
Lemma
map_dom_empty_2 :
(m:(Map A)) ((a:ad) (in_dom ? a m)=false) -> (eqmap A m (M0 A)).
Proof
.
Unfold eqmap eqm in_dom. Intros.
Cut (Cases (MapGet A m a) of NONE => false | (SOME _) => true end)=false.
Case (MapGet A m a). Trivial.
Intros. Discriminate H0.
Exact (H a).
Qed
.
Lemma
MapSubset_imp_2 :
(m:(Map A)) (m':(Map B)) (MapSubset m m') -> (MapSubset_2 m m').
Proof
.
Unfold MapSubset MapSubset_2. Intros. Apply map_dom_empty_2. Intro. Rewrite in_dom_restrby.
Elim (sumbool_of_bool (in_dom A a m)). Intro H0. Rewrite H0. Rewrite (H a H0). Reflexivity.
Intro H0. Rewrite H0. Reflexivity.
Qed
.
Lemma
MapSubset_2_imp :
(m:(Map A)) (m':(Map B)) (MapSubset_2 m m') -> (MapSubset m m').
Proof
.
Unfold MapSubset MapSubset_2. Intros. Cut (in_dom ? a (MapDomRestrBy A B m m'))=false.
Rewrite in_dom_restrby. Intro. Elim (andb_false_elim ? ? H1). Rewrite H0.
Intro H2. Discriminate H2.
Intro H2. Rewrite (negb_intro (in_dom B a m')). Rewrite H2. Reflexivity.
Exact (map_dom_empty_1 ? H a).
Qed
.
End
MapSubsetDef.
Section
MapSubsetOrder.
Variable
A, B, C : Set.
Lemma
MapSubset_refl : (m:(Map A)) (MapSubset A A m m).
Proof
.
Unfold MapSubset. Trivial.
Qed
.
Lemma
MapSubset_antisym : (m:(Map A)) (m':(Map B))
(MapSubset A B m m') -> (MapSubset B A m' m) ->
(eqmap unit (MapDom A m) (MapDom B m')).
Proof
.
Unfold MapSubset eqmap eqm. Intros. Elim (option_sum ? (MapGet ? (MapDom A m) a)).
Intro H1. Elim H1. Intro t. Elim t. Intro H2. Elim (option_sum ? (MapGet ? (MapDom B m') a)).
Intro H3. Elim H3. Intro t'. Elim t'. Intro H4. Rewrite H4. Exact H2.
Intro H3. Cut (in_dom B a m')=true. Intro. Rewrite (MapDom_Dom B m' a) in H4.
Unfold in_FSet in_dom in H4. Rewrite H3 in H4. Discriminate H4.
Apply H. Rewrite (MapDom_Dom A m a). Unfold in_FSet in_dom. Rewrite H2. Reflexivity.
Intro H1. Elim (option_sum ? (MapGet ? (MapDom B m') a)). Intro H2. Elim H2. Intros t H3.
Cut (in_dom A a m)=true. Intro. Rewrite (MapDom_Dom A m a) in H4. Unfold in_FSet in_dom in H4.
Rewrite H1 in H4. Discriminate H4.
Apply H0. Rewrite (MapDom_Dom B m' a). Unfold in_FSet in_dom. Rewrite H3. Reflexivity.
Intro H2. Rewrite H2. Exact H1.
Qed
.
Lemma
MapSubset_trans : (m:(Map A)) (m':(Map B)) (m'':(Map C))
(MapSubset A B m m') -> (MapSubset B C m' m'') -> (MapSubset A C m m'').
Proof
.
Unfold MapSubset. Intros. Apply H0. Apply H. Assumption.
Qed
.
End
MapSubsetOrder.
Section
FSubsetOrder.
Lemma
FSubset_refl : (s:FSet) (MapSubset ? ? s s).
Proof
.
Exact (MapSubset_refl unit).
Qed
.
Lemma
FSubset_antisym : (s,s':FSet)
(MapSubset ? ? s s') -> (MapSubset ? ? s' s) -> (eqmap unit s s').
Proof
.
Intros. Rewrite <- (FSet_Dom s). Rewrite <- (FSet_Dom s').
Exact (MapSubset_antisym ? ? s s' H H0).
Qed
.
Lemma
FSubset_trans : (s,s',s'':FSet)
(MapSubset ? ? s s') -> (MapSubset ? ? s' s'') -> (MapSubset ? ? s s'').
Proof
.
Exact (MapSubset_trans unit unit unit).
Qed
.
End
FSubsetOrder.
Section
MapSubsetExtra.
Variable
A, B : Set.
Lemma
MapSubset_Dom_1 : (m:(Map A)) (m':(Map B))
(MapSubset A B m m') -> (MapSubset unit unit (MapDom A m) (MapDom B m')).
Proof
.
Unfold MapSubset. Intros. Elim (MapDom_semantics_2 ? m a H0). Intros y H1.
Cut (in_dom A a m)=true->(in_dom B a m')=true. Intro. Unfold in_dom in H2.
Rewrite H1 in H2. Elim (option_sum ? (MapGet B m' a)). Intro H3. Elim H3.
Intros y' H4. Exact (MapDom_semantics_1 ? m' a y' H4).
Intro H3. Rewrite H3 in H2. Cut false=true. Intro. Discriminate H4.
Apply H2. Reflexivity.
Exact (H a).
Qed
.
Lemma
MapSubset_Dom_2 : (m:(Map A)) (m':(Map B))
(MapSubset unit unit (MapDom A m) (MapDom B m')) -> (MapSubset A B m m').
Proof
.
Unfold MapSubset. Intros. Unfold in_dom in H0. Elim (option_sum ? (MapGet A m a)).
Intro H1. Elim H1. Intros y H2.
Elim (MapDom_semantics_2 ? ? ? (H a (MapDom_semantics_1 ? ? ? ? H2))). Intros y' H3.
Unfold in_dom. Rewrite H3. Reflexivity.
Intro H1. Rewrite H1 in H0. Discriminate H0.
Qed
.
Lemma
MapSubset_1_Dom : (m:(Map A)) (m':(Map B))
(MapSubset_1 A B m m')=(MapSubset_1 unit unit (MapDom A m) (MapDom B m')).
Proof
.
Intros. Elim (sumbool_of_bool (MapSubset_1 A B m m')). Intro H. Rewrite H.
Apply sym_eq. Apply MapSubset_imp_1. Apply MapSubset_Dom_1. Exact (MapSubset_1_imp ? ? ? ? H).
Intro H. Rewrite H. Elim (sumbool_of_bool (MapSubset_1 unit unit (MapDom A m) (MapDom B m'))).
Intro H0.
Rewrite (MapSubset_imp_1 ? ? ? ? (MapSubset_Dom_2 ? ? (MapSubset_1_imp ? ? ? ? H0))) in H.
Discriminate H.
Intro. Apply sym_eq. Assumption.
Qed
.
Lemma
MapSubset_Put : (m:(Map A)) (a:ad) (y:A) (MapSubset A A m (MapPut A m a y)).
Proof
.
Unfold MapSubset. Intros. Rewrite in_dom_put. Rewrite H. Apply orb_b_true.
Qed
.
Lemma
MapSubset_Put_mono : (m:(Map A)) (m':(Map B)) (a:ad) (y:A) (y':B)
(MapSubset A B m m') -> (MapSubset A B (MapPut A m a y) (MapPut B m' a y')).
Proof
.
Unfold MapSubset. Intros. Rewrite in_dom_put. Rewrite (in_dom_put A m a y a0) in H0.
Elim (orb_true_elim ? ? H0). Intro H1. Rewrite H1. Reflexivity.
Intro H1. Rewrite (H ? H1). Apply orb_b_true.
Qed
.
Lemma
MapSubset_Put_behind :
(m:(Map A)) (a:ad) (y:A) (MapSubset A A m (MapPut_behind A m a y)).
Proof
.
Unfold MapSubset. Intros. Rewrite in_dom_put_behind. Rewrite H. Apply orb_b_true.
Qed
.
Lemma
MapSubset_Put_behind_mono : (m:(Map A)) (m':(Map B)) (a:ad) (y:A) (y':B)
(MapSubset A B m m') ->
(MapSubset A B (MapPut_behind A m a y) (MapPut_behind B m' a y')).
Proof
.
Unfold MapSubset. Intros. Rewrite in_dom_put_behind.
Rewrite (in_dom_put_behind A m a y a0) in H0.
Elim (orb_true_elim ? ? H0). Intro H1. Rewrite H1. Reflexivity.
Intro H1. Rewrite (H ? H1). Apply orb_b_true.
Qed
.
Lemma
MapSubset_Remove : (m:(Map A)) (a:ad) (MapSubset A A (MapRemove A m a) m).
Proof
.
Unfold MapSubset. Intros. Unfold MapSubset. Intros. Rewrite (in_dom_remove ? m a a0) in H.
Elim (andb_prop ? ? H). Trivial.
Qed
.
Lemma
MapSubset_Remove_mono : (m:(Map A)) (m':(Map B)) (a:ad)
(MapSubset A B m m') -> (MapSubset A B (MapRemove A m a) (MapRemove B m' a)).
Proof
.
Unfold MapSubset. Intros. Rewrite in_dom_remove. Rewrite (in_dom_remove A m a a0) in H0.
Elim (andb_prop ? ? H0). Intros. Rewrite H1. Rewrite (H ? H2). Reflexivity.
Qed
.
Lemma
MapSubset_Merge_l : (m,m':(Map A)) (MapSubset A A m (MapMerge A m m')).
Proof
.
Unfold MapSubset. Intros. Rewrite in_dom_merge. Rewrite H. Reflexivity.
Qed
.
Lemma
MapSubset_Merge_r : (m,m':(Map A)) (MapSubset A A m' (MapMerge A m m')).
Proof
.
Unfold MapSubset. Intros. Rewrite in_dom_merge. Rewrite H. Apply orb_b_true.
Qed
.
Lemma
MapSubset_Merge_mono : (m,m':(Map A)) (m'',m''':(Map B))
(MapSubset A B m m'') -> (MapSubset A B m' m''') ->
(MapSubset A B (MapMerge A m m') (MapMerge B m'' m''')).
Proof
.
Unfold MapSubset. Intros. Rewrite in_dom_merge. Rewrite (in_dom_merge A m m' a) in H1.
Elim (orb_true_elim ? ? H1). Intro H2. Rewrite (H ? H2). Reflexivity.
Intro H2. Rewrite (H0 ? H2). Apply orb_b_true.
Qed
.
Lemma
MapSubset_DomRestrTo_l : (m:(Map A)) (m':(Map B))
(MapSubset A A (MapDomRestrTo A B m m') m).
Proof
.
Unfold MapSubset. Intros. Rewrite (in_dom_restrto ? ? m m' a) in H. Elim (andb_prop ? ? H).
Trivial.
Qed
.
Lemma
MapSubset_DomRestrTo_r: (m:(Map A)) (m':(Map B))
(MapSubset A B (MapDomRestrTo A B m m') m').
Proof
.
Unfold MapSubset. Intros. Rewrite (in_dom_restrto ? ? m m' a) in H. Elim (andb_prop ? ? H).
Trivial.
Qed
.
Lemma
MapSubset_ext : (m0,m1:(Map A)) (m2,m3:(Map B))
(eqmap A m0 m1) -> (eqmap B m2 m3) ->
(MapSubset A B m0 m2) -> (MapSubset A B m1 m3).
Proof
.
Intros. Apply MapSubset_2_imp. Unfold MapSubset_2.
Apply eqmap_trans with m':=(MapDomRestrBy A B m0 m2). Apply MapDomRestrBy_ext. Apply eqmap_sym.
Assumption.
Apply eqmap_sym. Assumption.
Exact (MapSubset_imp_2 ? ? ? ? H1).
Qed
.
Variable
C, D : Set.
Lemma
MapSubset_DomRestrTo_mono :
(m:(Map A)) (m':(Map B)) (m'':(Map C)) (m''':(Map D))
(MapSubset ? ? m m'') -> (MapSubset ? ? m' m''') ->
(MapSubset ? ? (MapDomRestrTo ? ? m m') (MapDomRestrTo ? ? m'' m''')).
Proof
.
Unfold MapSubset. Intros. Rewrite in_dom_restrto. Rewrite (in_dom_restrto A B m m' a) in H1.
Elim (andb_prop ? ? H1). Intros. Rewrite (H ? H2). Rewrite (H0 ? H3). Reflexivity.
Qed
.
Lemma
MapSubset_DomRestrBy_l : (m:(Map A)) (m':(Map B))
(MapSubset A A (MapDomRestrBy A B m m') m).
Proof
.
Unfold MapSubset. Intros. Rewrite (in_dom_restrby ? ? m m' a) in H. Elim (andb_prop ? ? H).
Trivial.
Qed
.
Lemma
MapSubset_DomRestrBy_mono :
(m:(Map A)) (m':(Map B)) (m'':(Map C)) (m''':(Map D))
(MapSubset ? ? m m'') -> (MapSubset ? ? m''' m') ->
(MapSubset ? ? (MapDomRestrBy ? ? m m') (MapDomRestrBy ? ? m'' m''')).
Proof
.
Unfold MapSubset. Intros. Rewrite in_dom_restrby. Rewrite (in_dom_restrby A B m m' a) in H1.
Elim (andb_prop ? ? H1). Intros. Rewrite (H ? H2). Elim (sumbool_of_bool (in_dom D a m''')).
Intro H4. Rewrite (H0 ? H4) in H3. Discriminate H3.
Intro H4. Rewrite H4. Reflexivity.
Qed
.
End
MapSubsetExtra.
Section
MapDisjointDef.
Variable
A, B : Set.
Definition
MapDisjoint := [m:(Map A)] [m':(Map B)]
(a:ad) (in_dom A a m)=true -> (in_dom B a m')=true -> False.
Definition
MapDisjoint_1 := [m:(Map A)] [m':(Map B)]
Cases (MapSweep A [a:ad][_:A] (in_dom B a m') m) of
NONE => true
| _ => false
end.
Definition
MapDisjoint_2 := [m:(Map A)] [m':(Map B)]
(eqmap A (MapDomRestrTo A B m m') (M0 A)).
Lemma
MapDisjoint_imp_1 : (m:(Map A)) (m':(Map B))
(MapDisjoint m m') -> (MapDisjoint_1 m m')=true.
Proof
.
Unfold MapDisjoint MapDisjoint_1. Intros.
Elim (option_sum ? (MapSweep A [a:ad][_:A](in_dom B a m') m)). Intro H0. Elim H0.
Intro r. Elim r. Intros a y H1. Cut (in_dom A a m)=true->(in_dom B a m')=true->False.
Intro. Unfold 1 in_dom in H2. Rewrite (MapSweep_semantics_2 ? ? ? ? ? H1) in H2.
Rewrite (MapSweep_semantics_1 ? ? ? ? ? H1) in H2. Elim (H2 (refl_equal ? ?) (refl_equal ? ?)).
Exact (H a).
Intro H0. Rewrite H0. Reflexivity.
Qed
.
Lemma
MapDisjoint_1_imp : (m:(Map A)) (m':(Map B))
(MapDisjoint_1 m m')=true -> (MapDisjoint m m').
Proof
.
Unfold MapDisjoint MapDisjoint_1. Intros.
Elim (option_sum ? (MapSweep A [a:ad][_:A](in_dom B a m') m)). Intro H2. Elim H2.
Intro r. Elim r. Intros a' y' H3. Rewrite H3 in H. Discriminate H.
Intro H2. Unfold in_dom in H0. Elim (option_sum ? (MapGet A m a)). Intro H3. Elim H3.
Intros y H4. Rewrite (MapSweep_semantics_3 ? ? ? H2 a y H4) in H1. Discriminate H1.
Intro H3. Rewrite H3 in H0. Discriminate H0.
Qed
.
Lemma
MapDisjoint_imp_2 : (m:(Map A)) (m':(Map B)) (MapDisjoint m m') ->
(MapDisjoint_2 m m').
Proof
.
Unfold MapDisjoint MapDisjoint_2. Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrTo_semantics A B m m' a).
Cut (in_dom A a m)=true->(in_dom B a m')=true->False. Intro.
Elim (option_sum ? (MapGet A m a)). Intro H1. Elim H1. Intros y H2. Unfold 1 in_dom in H0.
Elim (option_sum ? (MapGet B m' a)). Intro H3. Elim H3. Intros y' H4. Unfold 1 in_dom in H0.
Rewrite H4 in H0. Rewrite H2 in H0. Elim (H0 (refl_equal ? ?) (refl_equal ? ?)).
Intro H3. Rewrite H3. Reflexivity.
Intro H1. Rewrite H1. Case (MapGet B m' a); Reflexivity.
Exact (H a).
Qed
.
Lemma
MapDisjoint_2_imp : (m:(Map A)) (m':(Map B)) (MapDisjoint_2 m m') ->
(MapDisjoint m m').
Proof
.
Unfold MapDisjoint MapDisjoint_2. Unfold eqmap eqm. Intros. Elim (in_dom_some ? ? ? H0).
Intros y H2. Elim (in_dom_some ? ? ? H1). Intros y' H3.
Cut (MapGet A (MapDomRestrTo A B m m') a)=(NONE A). Intro.
Rewrite (MapDomRestrTo_semantics ? ? m m' a) in H4. Rewrite H3 in H4. Rewrite H2 in H4.
Discriminate H4.
Exact (H a).
Qed
.
Lemma
Map_M0_disjoint : (m:(Map B)) (MapDisjoint (M0 A) m).
Proof
.
Unfold MapDisjoint in_dom. Intros. Discriminate H.
Qed
.
Lemma
Map_disjoint_M0 : (m:(Map A)) (MapDisjoint m (M0 B)).
Proof
.
Unfold MapDisjoint in_dom. Intros. Discriminate H0.
Qed
.
End
MapDisjointDef.
Section
MapDisjointExtra.
Variable
A, B : Set.
Lemma
MapDisjoint_ext : (m0,m1:(Map A)) (m2,m3:(Map B))
(eqmap A m0 m1) -> (eqmap B m2 m3) ->
(MapDisjoint A B m0 m2) -> (MapDisjoint A B m1 m3).
Proof
.
Intros. Apply MapDisjoint_2_imp. Unfold MapDisjoint_2.
Apply eqmap_trans with m':=(MapDomRestrTo A B m0 m2). Apply eqmap_sym. Apply MapDomRestrTo_ext.
Assumption.
Assumption.
Exact (MapDisjoint_imp_2 ? ? ? ? H1).
Qed
.
Lemma
MapMerge_disjoint : (m,m':(Map A)) (MapDisjoint A A m m') ->
(a:ad) (in_dom A a (MapMerge A m m'))=
(orb (andb (in_dom A a m) (negb (in_dom A a m')))
(andb (in_dom A a m') (negb (in_dom A a m)))).
Proof
.
Unfold MapDisjoint. Intros. Rewrite in_dom_merge. Elim (sumbool_of_bool (in_dom A a m)).
Intro H0. Rewrite H0. Elim (sumbool_of_bool (in_dom A a m')). Intro H1. Elim (H a H0 H1).
Intro H1. Rewrite H1. Reflexivity.
Intro H0. Rewrite H0. Simpl. Rewrite andb_b_true. Reflexivity.
Qed
.
Lemma
MapDisjoint_M2_l : (m0,m1:(Map A)) (m2,m3:(Map B))
(MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3)) -> (MapDisjoint A B m0 m2).
Proof
.
Unfold MapDisjoint in_dom. Intros. Elim (option_sum ? (MapGet A m0 a)). Intro H2.
Elim H2. Intros y H3. Elim (option_sum ? (MapGet B m2 a)). Intro H4. Elim H4.
Intros y' H5. Apply (H (ad_double a)).
Rewrite (MapGet_M2_bit_0_0 ? (ad_double a) (ad_double_bit_0 a) m0 m1).
Rewrite (ad_double_div_2 a). Rewrite H3. Reflexivity.
Rewrite (MapGet_M2_bit_0_0 ? (ad_double a) (ad_double_bit_0 a) m2 m3).
Rewrite (ad_double_div_2 a). Rewrite H5. Reflexivity.
Intro H4. Rewrite H4 in H1. Discriminate H1.
Intro H2. Rewrite H2 in H0. Discriminate H0.
Qed
.
Lemma
MapDisjoint_M2_r : (m0,m1:(Map A)) (m2,m3:(Map B))
(MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3)) -> (MapDisjoint A B m1 m3).
Proof
.
Unfold MapDisjoint in_dom. Intros. Elim (option_sum ? (MapGet A m1 a)). Intro H2.
Elim H2. Intros y H3. Elim (option_sum ? (MapGet B m3 a)). Intro H4. Elim H4.
Intros y' H5. Apply (H (ad_double_plus_un a)).
Rewrite (MapGet_M2_bit_0_1 ? (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) m0 m1).
Rewrite (ad_double_plus_un_div_2 a). Rewrite H3. Reflexivity.
Rewrite (MapGet_M2_bit_0_1 ? (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) m2 m3).
Rewrite (ad_double_plus_un_div_2 a). Rewrite H5. Reflexivity.
Intro H4. Rewrite H4 in H1. Discriminate H1.
Intro H2. Rewrite H2 in H0. Discriminate H0.
Qed
.
Lemma
MapDisjoint_M2 : (m0,m1:(Map A)) (m2,m3:(Map B))
(MapDisjoint A B m0 m2) -> (MapDisjoint A B m1 m3) ->
(MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3)).
Proof
.
Unfold MapDisjoint in_dom. Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H3.
Rewrite (MapGet_M2_bit_0_1 A a H3 m0 m1) in H1.
Rewrite (MapGet_M2_bit_0_1 B a H3 m2 m3) in H2. Exact (H0 (ad_div_2 a) H1 H2).
Intro H3. Rewrite (MapGet_M2_bit_0_0 A a H3 m0 m1) in H1.
Rewrite (MapGet_M2_bit_0_0 B a H3 m2 m3) in H2. Exact (H (ad_div_2 a) H1 H2).
Qed
.
Lemma
MapDisjoint_M1_l : (m:(Map A)) (a:ad) (y:B)
(MapDisjoint B A (M1 B a y) m) -> (in_dom A a m)=false.
Proof
.
Unfold MapDisjoint. Intros. Elim (sumbool_of_bool (in_dom A a m)). Intro H0.
Elim (H a (in_dom_M1_1 B a y) H0).
Trivial.
Qed
.
Lemma
MapDisjoint_M1_r : (m:(Map A)) (a:ad) (y:B)
(MapDisjoint A B m (M1 B a y)) -> (in_dom A a m)=false.
Proof
.
Unfold MapDisjoint. Intros. Elim (sumbool_of_bool (in_dom A a m)). Intro H0.
Elim (H a H0 (in_dom_M1_1 B a y)).
Trivial.
Qed
.
Lemma
MapDisjoint_M1_conv_l : (m:(Map A)) (a:ad) (y:B)
(in_dom A a m)=false -> (MapDisjoint B A (M1 B a y) m).
Proof
.
Unfold MapDisjoint. Intros. Rewrite (in_dom_M1_2 B a a0 y H0) in H. Rewrite H1 in H.
Discriminate H.
Qed
.
Lemma
MapDisjoint_M1_conv_r : (m:(Map A)) (a:ad) (y:B)
(in_dom A a m)=false -> (MapDisjoint A B m (M1 B a y)).
Proof
.
Unfold MapDisjoint. Intros. Rewrite (in_dom_M1_2 B a a0 y H1) in H. Rewrite H0 in H.
Discriminate H.
Qed
.
Lemma
MapDisjoint_sym : (m:(Map A)) (m':(Map B))
(MapDisjoint A B m m') -> (MapDisjoint B A m' m).
Proof
.
Unfold MapDisjoint. Intros. Exact (H ? H1 H0).
Qed
.
Lemma
MapDisjoint_empty : (m:(Map A)) (MapDisjoint A A m m) -> (eqmap A m (M0 A)).
Proof
.
Unfold eqmap eqm. Intros. Rewrite <- (MapDomRestrTo_idempotent A m a).
Exact (MapDisjoint_imp_2 A A m m H a).
Qed
.
Lemma
MapDelta_disjoint : (m,m':(Map A)) (MapDisjoint A A m m') ->
(eqmap A (MapDelta A m m') (MapMerge A m m')).
Proof
.
Intros.
Apply eqmap_trans with m':=(MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')).
Apply MapDelta_as_DomRestrBy.
Apply eqmap_trans with m':=(MapDomRestrBy A A (MapMerge A m m') (M0 A)).
Apply MapDomRestrBy_ext. Apply eqmap_refl.
Exact (MapDisjoint_imp_2 A A m m' H).
Apply MapDomRestrBy_m_empty.
Qed
.
Variable
C : Set.
Lemma
MapDomRestr_disjoint : (m:(Map A)) (m':(Map B)) (m'':(Map C))
(MapDisjoint A B (MapDomRestrTo A C m m'') (MapDomRestrBy B C m' m'')).
Proof
.
Unfold MapDisjoint. Intros m m' m'' a. Rewrite in_dom_restrto. Rewrite in_dom_restrby.
Intros. Elim (andb_prop ? ? H). Elim (andb_prop ? ? H0). Intros. Rewrite H4 in H2.
Discriminate H2.
Qed
.
Lemma
MapDelta_RestrTo_disjoint : (m,m':(Map A))
(MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m m')).
Proof
.
Unfold MapDisjoint. Intros m m' a. Rewrite in_dom_delta. Rewrite in_dom_restrto.
Intros. Elim (andb_prop ? ? H0). Intros. Rewrite H1 in H. Rewrite H2 in H. Discriminate H.
Qed
.
Lemma
MapDelta_RestrTo_disjoint_2 : (m,m':(Map A))
(MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m' m)).
Proof
.
Unfold MapDisjoint. Intros m m' a. Rewrite in_dom_delta. Rewrite in_dom_restrto.
Intros. Elim (andb_prop ? ? H0). Intros. Rewrite H1 in H. Rewrite H2 in H. Discriminate H.
Qed
.
Variable
D : Set.
Lemma
MapSubset_Disjoint : (m:(Map A)) (m':(Map B)) (m'':(Map C)) (m''':(Map D))
(MapSubset ? ? m m') -> (MapSubset ? ? m'' m''') -> (MapDisjoint ? ? m' m''') ->
(MapDisjoint ? ? m m'').
Proof
.
Unfold MapSubset MapDisjoint. Intros. Exact (H1 ? (H ? H2) (H0 ? H3)).
Qed
.
Lemma
MapSubset_Disjoint_l : (m:(Map A)) (m':(Map B)) (m'':(Map C))
(MapSubset ? ? m m') -> (MapDisjoint ? ? m' m'') ->
(MapDisjoint ? ? m m'').
Proof
.
Unfold MapSubset MapDisjoint. Intros. Exact (H0 ? (H ? H1) H2).
Qed
.
Lemma
MapSubset_Disjoint_r : (m:(Map A)) (m'':(Map C)) (m''':(Map D))
(MapSubset ? ? m'' m''') -> (MapDisjoint ? ? m m''') ->
(MapDisjoint ? ? m m'').
Proof
.
Unfold MapSubset MapDisjoint. Intros. Exact (H0 ? H1 (H ? H2)).
Qed
.
End
MapDisjointExtra.