Module Coq.Wellfounded.Well_Ordering

Author: Cristina Cornes. From: Constructing Recursion Operators in Type Theory L. Paulson JSC (1986) 2, 325-355

Require Eqdep.

Section WellOrdering.
Variable A:Set.
Variable B:A->Set.

Inductive WO : Set :=
   sup : (a:A)(f:(B a)->WO)WO.

Inductive le_WO : WO->WO->Prop :=
  le_sup : (a:A)(f:(B a)->WO)(v:(B a)) (le_WO (f v) (sup a f)).
 

Theorem wf_WO : (well_founded WO le_WO ).
Proof.
 Unfold well_founded ;Intro.
 Apply Acc_intro.
 Elim a.
 Intros.
 Inversion H0.
 Apply Acc_intro.
 Generalize H4 ;Generalize H1 ;Generalize f0 ;Generalize v.
 Rewrite -> H3.
 Intros.
 Apply (H v0 y0).
 Cut (eq ? f f1).
 Intros E;Rewrite -> E;Auto.
 Symmetry.
 Apply (inj_pair2 A [a0:A](B a0)->WO a0 f1 f H5).
Qed.

End WellOrdering.

Section Characterisation_wf_relations.

Wellfounded relations are the inverse image of wellordering types

Variable A:Set.
Variable leA:A->A->Prop.

Definition B:= [a:A] {x:A | (leA x a)}.

Definition wof: (well_founded A leA)-> A-> (WO A B).
Proof.
 Intros.
 Apply (well_founded_induction A leA H [a:A](WO A B));Auto.
 Intros.
 Apply (sup A B x).
 Unfold 1 B .
 Induction 1.
 Intros.
 Apply (H1 x0);Auto.
Qed.

End Characterisation_wf_relations.


Index