Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (3647 entries)
Tactic Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (9 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (107 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2540 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (184 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (118 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (523 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (166 entries)

C

canonical_Rsqr [lemma, in Coq.Reals.R_sqr]
cardinal [inductive, in Coq.Sets.Finite_sets]
cardinalO_empty [lemma, in Coq.Sets.Finite_sets_facts]
cardinal_decreases [lemma, in Coq.Sets.Image]
cardinal_elim [lemma, in Coq.Sets.Finite_sets]
cardinal_Empty [lemma, in Coq.Sets.Finite_sets_facts]
cardinal_finite [lemma, in Coq.Sets.Finite_sets_facts]
cardinal_Im_intro [lemma, in Coq.Sets.Image]
cardinal_invert [lemma, in Coq.Sets.Finite_sets]
cardinal_is_functional [lemma, in Coq.Sets.Finite_sets_facts]
cardinal_unicity [lemma, in Coq.Sets.Finite_sets_facts]
card_add [constructor, in Coq.Sets.Finite_sets]
card_Add_gen [lemma, in Coq.Sets.Finite_sets_facts]
card_empty [constructor, in Coq.Sets.Finite_sets]
card_soustr_1 [lemma, in Coq.Sets.Finite_sets_facts]
Carrier [definition, in Coq.Sets.Partial_Order]
CaseEqk [tactic definition, in Coq.Reals.Rfunctions]
caseRxy [lemma, in Coq.Relations.Newman]
case_Rabsolu [lemma, in Coq.Reals.Rbasic_fun]
cauchy_bound [lemma, in Coq.Reals.Rseries]
Cauchy_crit [definition, in Coq.Reals.Rseries]
Charac [constructor, in Coq.Sets.Uniset]
charac [definition, in Coq.Sets.Uniset]
Choice [lemma, in Coq.Init.Specif]
Choice2 [lemma, in Coq.Init.Specif]
classic [axiom, in Coq.Logic.Classical_Prop]
Classical [module]
Classical_Pred_Set [module]
Classical_Pred_Type [module]
classical_proof_irrelevence [lemma, in Coq.Logic.Berardi]
Classical_Prop [module]
Classical_sets [module]
Classical_Type [module]
clos_refl_sym_trans [inductive, in Coq.Relations.Relation_Operators]
clos_refl_trans [inductive, in Coq.Relations.Relation_Operators]
clos_refl_trans_ind_left [lemma, in Coq.Relations.Operators_Properties]
clos_rst_idempotent [lemma, in Coq.Relations.Operators_Properties]
clos_rst_is_equiv [lemma, in Coq.Relations.Operators_Properties]
clos_rt_clos_rst [lemma, in Coq.Relations.Operators_Properties]
clos_rt_idempotent [lemma, in Coq.Relations.Operators_Properties]
clos_rt_is_preorder [lemma, in Coq.Relations.Operators_Properties]
clos_trans [inductive, in Coq.Relations.Relation_Operators]
coherence [definition, in Coq.Relations.Newman]
coherence_intro [lemma, in Coq.Relations.Newman]
coherence_sym [lemma, in Coq.Relations.Newman]
coherent [definition, in Coq.Sets.Relations_3]
coherent_symmetric [lemma, in Coq.Sets.Relations_3_facts]
CoInduction [definition, in Coq.Lists.Streams]
commut [definition, in Coq.Relations.Relation_Definitions]
commut [definition, in Coq.Relations.Rstar]
comm_left [lemma, in Coq.Sets.Permut]
comm_right [lemma, in Coq.Sets.Permut]
comp [definition, in Coq.Reals.Ranalysis]
compare [definition, in Coq.Arith.Compare]
compare [definition, in Coq.ZArith.fast_integer]
Compare [module]
compare_convert1 [lemma, in Coq.ZArith.fast_integer]
compare_convert_EGAL [lemma, in Coq.ZArith.fast_integer]
compare_convert_INFERIEUR [lemma, in Coq.ZArith.fast_integer]
compare_convert_O [lemma, in Coq.ZArith.fast_integer]
compare_convert_SUPERIEUR [lemma, in Coq.ZArith.fast_integer]
Compare_dec [module]
compare_positive_to_nat_O [lemma, in Coq.ZArith.fast_integer]
Compatible [definition, in Coq.Sets.Cpo]
Complement [definition, in Coq.Sets.Ensembles]
Complement [definition, in Coq.Sets.Relations_1_facts]
Complement_Complement [lemma, in Coq.Sets.Classical_sets]
complet [axiom, in Coq.Reals.Raxioms]
Complete [inductive, in Coq.Sets.Cpo]
composition_derivable [lemma, in Coq.Reals.Ranalysis]
composition_derivable_var [lemma, in Coq.Reals.Ranalysis]
Conditionally_complete [inductive, in Coq.Sets.Cpo]
confluence [definition, in Coq.Relations.Newman]
confluent [definition, in Coq.Sets.Relations_3]
Confluent [definition, in Coq.Sets.Relations_3]
congr_eqT [lemma, in Coq.Init.Logic_Type]
congr_idT [lemma, in Coq.Init.Logic_Type]
cong_antisymmetric_same_relation [lemma, in Coq.Sets.Relations_1_facts]
cong_congr [lemma, in Coq.Sets.Permut]
cong_reflexive_same_relation [lemma, in Coq.Sets.Relations_1_facts]
cong_symmetric_same_relation [lemma, in Coq.Sets.Relations_1_facts]
cong_transitive_same_relation [lemma, in Coq.Sets.Relations_1_facts]
conj [constructor, in Coq.Init.Logic]
cons [constructor, in Coq.Lists.PolyList]
Cons [definition, in Coq.Wellfounded.Lexicographic_Exponentiation]
cons [constructor, in Coq.Lists.List]
Cons [constructor, in Coq.Lists.Streams]
const [definition, in Coq.Lists.Streams]
constant [definition, in Coq.Reals.Ranalysis]
Constructive_sets [module]
const_continuity [lemma, in Coq.Reals.Ranalysis]
const_continuous [lemma, in Coq.Reals.Ranalysis]
const_derivable [lemma, in Coq.Reals.Ranalysis]
cons_leA [constructor, in Coq.Sorting.Sorting]
cons_sort [constructor, in Coq.Sorting.Sorting]
contains [definition, in Coq.Sets.Relations_1]
contains_is_preorder [lemma, in Coq.Sets.Relations_1_facts]
contents [definition, in Coq.Sorting.Heap]
continue_in [definition, in Coq.Reals.Rderiv]
continuity [definition, in Coq.Reals.Ranalysis]
continuity_pt [definition, in Coq.Reals.Ranalysis]
cont_deriv [lemma, in Coq.Reals.Rderiv]
convert [definition, in Coq.ZArith.fast_integer]
convert_add [lemma, in Coq.ZArith.fast_integer]
convert_add_carry [lemma, in Coq.ZArith.fast_integer]
convert_add_un [lemma, in Coq.ZArith.fast_integer]
convert_compare_EGAL [lemma, in Coq.ZArith.fast_integer]
convert_compare_INFERIEUR [lemma, in Coq.ZArith.fast_integer]
convert_compare_SUPERIEUR [lemma, in Coq.ZArith.fast_integer]
convert_intro [lemma, in Coq.ZArith.fast_integer]
convert_xH [lemma, in Coq.IntMap.Adalloc]
convert_xI [lemma, in Coq.IntMap.Adalloc]
convert_xO [lemma, in Coq.IntMap.Adalloc]
COS [lemma, in Coq.Reals.Rtrigo]
cos [axiom, in Coq.Reals.Rtrigo]
cosd [definition, in Coq.Reals.Rtrigo]
cos2 [lemma, in Coq.Reals.Rtrigo]
cos3PI4 [lemma, in Coq.Reals.Rtrigo]
cos_approx [definition, in Coq.Reals.Rtrigo]
COS_bound [lemma, in Coq.Reals.Rtrigo]
cos_bound [axiom, in Coq.Reals.Rtrigo]
cos_decreasing_0 [lemma, in Coq.Reals.Rtrigo]
cos_decreasing_1 [lemma, in Coq.Reals.Rtrigo]
cos_decr_0 [lemma, in Coq.Reals.Rtrigo]
cos_decr_1 [lemma, in Coq.Reals.Rtrigo]
cos_eq_0_0 [lemma, in Coq.Reals.Rtrigo]
cos_eq_0_1 [lemma, in Coq.Reals.Rtrigo]
cos_eq_0_2PI_0 [lemma, in Coq.Reals.Rtrigo]
cos_eq_0_2PI_1 [lemma, in Coq.Reals.Rtrigo]
cos_ge_0 [lemma, in Coq.Reals.Rtrigo]
cos_ge_0_3PI2 [lemma, in Coq.Reals.Rtrigo]
cos_gt_0 [lemma, in Coq.Reals.Rtrigo]
cos_increasing_0 [lemma, in Coq.Reals.Rtrigo]
cos_increasing_1 [lemma, in Coq.Reals.Rtrigo]
cos_incr_0 [lemma, in Coq.Reals.Rtrigo]
cos_incr_1 [lemma, in Coq.Reals.Rtrigo]
cos_lb [definition, in Coq.Reals.Rtrigo]
cos_le_0 [lemma, in Coq.Reals.Rtrigo]
cos_lt_0 [lemma, in Coq.Reals.Rtrigo]
cos_minus [axiom, in Coq.Reals.Rtrigo]
cos_neg [lemma, in Coq.Reals.Rtrigo]
cos_period [lemma, in Coq.Reals.Rtrigo]
cos_PI [lemma, in Coq.Reals.Rtrigo]
cos_PI2 [lemma, in Coq.Reals.Rtrigo]
cos_PI3 [lemma, in Coq.Reals.Rtrigo]
cos_PI4 [lemma, in Coq.Reals.Rtrigo]
cos_PI6 [lemma, in Coq.Reals.Rtrigo]
cos_plus [axiom, in Coq.Reals.Rtrigo]
cos_shift [lemma, in Coq.Reals.Rtrigo]
cos_sin [lemma, in Coq.Reals.Rtrigo]
cos_sin_0 [lemma, in Coq.Reals.Rtrigo]
cos_sin_0_var [lemma, in Coq.Reals.Rtrigo]
cos_term [definition, in Coq.Reals.Rtrigo]
cos_ub [definition, in Coq.Reals.Rtrigo]
cos_0 [axiom, in Coq.Reals.Rtrigo]
cos_2a [lemma, in Coq.Reals.Rtrigo]
cos_2a_cos [lemma, in Coq.Reals.Rtrigo]
cos_2a_sin [lemma, in Coq.Reals.Rtrigo]
cos_2PI [lemma, in Coq.Reals.Rtrigo]
cos_2PI3 [lemma, in Coq.Reals.Rtrigo]
cos_3PI2 [lemma, in Coq.Reals.Rtrigo]
cos_5PI4 [lemma, in Coq.Reals.Rtrigo]
Couple [inductive, in Coq.Sets.Ensembles]
Couple_as_union [lemma, in Coq.Sets.Powerset_facts]
Couple_inv [lemma, in Coq.Sets.Constructive_sets]
Couple_l [constructor, in Coq.Sets.Ensembles]
Couple_r [constructor, in Coq.Sets.Ensembles]
covers [inductive, in Coq.Sets.Partial_Order]
covers_Add [lemma, in Coq.Sets.Powerset_Classical_facts]
covers_is_Add [lemma, in Coq.Sets.Powerset_Classical_facts]
Cpo [module]
cvt_carry [lemma, in Coq.ZArith.fast_integer]


Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (3647 entries)
Tactic Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (9 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (107 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2540 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (184 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (118 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (523 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (166 entries)