Module Coq.Sets.Relations_2

Require Export Relations_1.

Section Relations_2.
Variable U: Type.
Variable R: (Relation U).

Inductive Rstar : (Relation U) :=
     Rstar_0: (x: U) (Rstar x x)
   | Rstar_n: (x, y, z: U) (R x y) -> (Rstar y z) -> (Rstar x z).

Inductive Rstar1 : (Relation U) :=
     Rstar1_0: (x: U) (Rstar1 x x)
   | Rstar1_1: (x: U) (y: U) (R x y) -> (Rstar1 x y)
   | Rstar1_n: (x, y, z: U) (Rstar1 x y) -> (Rstar1 y z) -> (Rstar1 x z).

Inductive Rplus : (Relation U) :=
     Rplus_0: (x, y: U) (R x y) -> (Rplus x y)
   | Rplus_n: (x, y, z: U) (R x y) -> (Rplus y z) -> (Rplus x z).

Definition Strongly_confluent : Prop :=
   (x, a, b: U) (R x a) -> (R x b) -> (exT U [z: U] (R a z) /\ (R b z)).

End Relations_2.

Hints Resolve Rstar_0 : sets v62.
Hints Resolve Rstar1_0 : sets v62.
Hints Resolve Rstar1_1 : sets v62.
Hints Resolve Rplus_0 : sets v62.


Index