Module Coq.Arith.Mult

Require Export Plus.
Require Export Minus.
Require Export Lt.

Multiplication

Lemma mult_plus_distr :
      (n,m,p:nat)((mult (plus n m) p)=(plus (mult n p) (mult m p))).
Proof.
Intros; Elim n; Simpl; Intros; Auto with arith.
Elim plus_assoc_l; Elim H; Auto with arith.
Qed.
Hints Resolve mult_plus_distr : arith v62.

Lemma mult_plus_distr_r : (n,m,p:nat) (mult n (plus m p))=(plus (mult n m) (mult n p)).
Proof.
  NewInduction n. Trivial.
  Intros. Simpl. Rewrite (IHn m p). Apply sym_eq. Apply plus_permute_2_in_4.
Qed.

Lemma mult_minus_distr : (n,m,p:nat)((mult (minus n m) p)=(minus (mult n p) (mult m p))).
Proof.
Intros; Pattern n m; Apply nat_double_ind; Simpl; Intros; Auto with arith.
Elim minus_plus_simpl; Auto with arith.
Qed.
Hints Resolve mult_minus_distr : arith v62.

Lemma mult_O_le : (n,m:nat)(m=O)\/(le n (mult m n)).
Proof.
NewInduction m; Simpl; Auto with arith.
Qed.
Hints Resolve mult_O_le : arith v62.

Lemma mult_assoc_r : (n,m,p:nat)((mult (mult n m) p) = (mult n (mult m p))).
Proof.
Intros; Elim n; Intros; Simpl; Auto with arith.
Rewrite mult_plus_distr.
Elim H; Auto with arith.
Qed.
Hints Resolve mult_assoc_r : arith v62.

Lemma mult_assoc_l : (n,m,p:nat)(mult n (mult m p)) = (mult (mult n m) p).
Auto with arith.
Save.
Hints Resolve mult_assoc_l : arith v62.

Lemma mult_1_n : (n:nat)(mult (S O) n)=n.
Simpl; Auto with arith.
Save.
Hints Resolve mult_1_n : arith v62.

Lemma mult_sym : (n,m:nat)(mult n m)=(mult m n).
Intros; Elim n; Intros; Simpl; Auto with arith.
Elim mult_n_Sm.
Elim H; Apply plus_sym.
Save.
Hints Resolve mult_sym : arith v62.

Lemma mult_n_1 : (n:nat)(mult n (S O))=n.
Intro; Elim mult_sym; Auto with arith.
Save.
Hints Resolve mult_n_1 : arith v62.

Lemma mult_le : (m,n,p:nat) (le n p) -> (le (mult m n) (mult m p)).
Proof.
  NewInduction m. Intros. Simpl. Apply le_n.
  Intros. Simpl. Apply le_plus_plus. Assumption.
  Apply IHm. Assumption.
Qed.
Hints Resolve mult_le : arith.

Lemma mult_lt : (m,n,p:nat) (lt n p) -> (lt (mult (S m) n) (mult (S m) p)).
Proof.
  NewInduction m. Intros. Simpl. Rewrite <- plus_n_O. Rewrite <- plus_n_O. Assumption.
  Intros. Exact (lt_plus_plus ? ? ? ? H (IHm ? ? H)).
Qed.

Hints Resolve mult_lt : arith.

Lemma mult_le_conv_1 : (m,n,p:nat) (le (mult (S m) n) (mult (S m) p)) -> (le n p).
Proof.
  Intros. Elim (le_or_lt n p). Trivial.
  Intro H0. Cut (lt (mult (S m) n) (mult (S m) n)). Intro. Elim (lt_n_n ? H1).
  Apply le_lt_trans with m:=(mult (S m) p). Assumption.
  Apply mult_lt. Assumption.
Qed.

Tail-recursive mult

tail_mult is an alternative definition for mult which is tail-recursive, whereas mult is not. This can be useful when extracting programs.

Fixpoint mult_acc [s,m,n:nat] : nat :=
   Cases n of
      O => s
      | (S p) => (mult_acc (tail_plus m s) m p)
    end.

Lemma mult_acc_aux : (n,s,m:nat)(plus s (mult n m))= (mult_acc s m n).
Induction n; Simpl;Auto.
Intros p H s m; Rewrite <- plus_tail_plus; Rewrite <- H.
Rewrite <- plus_assoc_r; Apply (f_equal2 nat nat);Auto.
Rewrite plus_sym;Auto.
Qed.

Definition tail_mult := [n,m:nat](mult_acc O m n).

Lemma mult_tail_mult : (n,m:nat)(mult n m)=(tail_mult n m).
Intros; Unfold tail_mult; Rewrite <- mult_acc_aux;Auto.
Qed.

TailSimpl transforms any tail_plus and tail_mult into plus and mult and simplify

Tactic Definition TailSimpl :=
   Repeat Rewrite <- plus_tail_plus;
   Repeat Rewrite <- mult_tail_mult;
   Simpl.


Index