Require
Export
Ensembles.
Require
Export
Constructive_sets.
Require
Export
Classical_Type.
Section
Ensembles_classical.
Variable
U: Type.
Lemma
not_included_empty_Inhabited:
(A: (Ensemble U)) ~ (Included U A (Empty_set U)) -> (Inhabited U A).
Proof
.
Intros A NI.
Elim (not_all_ex_not U [x:U]~(In U A x)).
Intros x H; Apply Inhabited_intro with x.
Apply NNPP; Auto with sets.
Red; Intro.
Apply NI; Red.
Intros x H'; Elim (H x); Trivial with sets.
Qed
.
Hints
Resolve not_included_empty_Inhabited.
Lemma
not_empty_Inhabited:
(A: (Ensemble U)) ~ A == (Empty_set U) -> (Inhabited U A).
Proof
.
Intros; Apply not_included_empty_Inhabited.
Red; Auto with sets.
Qed
.
Lemma
Inhabited_Setminus :
(X, Y: (Ensemble U)) (Included U X Y) -> ~ (Included U Y X) ->
(Inhabited U (Setminus U Y X)).
Proof
.
Intros X Y I NI.
Elim (not_all_ex_not U [x:U](In U Y x)->(In U X x) NI).
Intros x YX.
Apply Inhabited_intro with x.
Apply Setminus_intro.
Apply not_imply_elim with (In U X x); Trivial with sets.
Auto with sets.
Qed
.
Hints
Resolve Inhabited_Setminus.
Lemma
Strict_super_set_contains_new_element:
(X, Y: (Ensemble U)) (Included U X Y) -> ~ X == Y ->
(Inhabited U (Setminus U Y X)).
Proof
.
Auto 7 with sets.
Qed
.
Hints
Resolve Strict_super_set_contains_new_element.
Lemma
Subtract_intro:
(A: (Ensemble U)) (x, y: U) (In U A y) -> ~ x == y ->
(In U (Subtract U A x) y).
Proof
.
Unfold 1 Subtract; Auto with sets.
Qed
.
Hints
Resolve Subtract_intro.
Lemma
Subtract_inv:
(A: (Ensemble U)) (x, y: U) (In U (Subtract U A x) y) ->
(In U A y) /\ ~ x == y.
Proof
.
Intros A x y H'; Elim H'; Auto with sets.
Qed
.
Lemma
Included_Strict_Included:
(X, Y: (Ensemble U)) (Included U X Y) -> (Strict_Included U X Y) \/ X == Y.
Proof
.
Intros X Y H'; Try Assumption.
Elim (classic X == Y); Auto with sets.
Qed
.
Lemma
Strict_Included_inv:
(X, Y: (Ensemble U)) (Strict_Included U X Y) ->
(Included U X Y) /\ (Inhabited U (Setminus U Y X)).
Proof
.
Intros X Y H'; Red in H'.
Split; [Tauto | Idtac].
Elim H'; Intros H'0 H'1; Try Exact H'1; Clear H'.
Apply Strict_super_set_contains_new_element; Auto with sets.
Qed
.
Lemma
not_SIncl_empty:
(X: (Ensemble U)) ~ (Strict_Included U X (Empty_set U)).
Proof
.
Intro X; Red; Intro H'; Try Exact H'.
LApply (Strict_Included_inv X (Empty_set U)); Auto with sets.
Intro H'0; Elim H'0; Intros H'1 H'2; Elim H'2; Clear H'0.
Intros x H'0; Elim H'0.
Intro H'3; Elim H'3.
Qed
.
Lemma
Complement_Complement :
(A: (Ensemble U)) (Complement U (Complement U A)) == A.
Proof
.
Unfold Complement; Intros; Apply Extensionality_Ensembles; Auto with sets.
Red; Split; Auto with sets.
Red; Intros; Apply NNPP; Auto with sets.
Qed
.
End
Ensembles_classical.
Hints
Resolve Strict_super_set_contains_new_element Subtract_intro
not_SIncl_empty : sets v62.