template-haskell-2.5.0.0

Portabilityportable
Stabilityexperimental
Maintainerlibraries@haskell.org

Language.Haskell.TH.Syntax

Contents

Description

Abstract syntax definitions for Template Haskell.

Synopsis

Documentation

class (Monad m, Functor m) => Quasi m where

Methods

qNewName

Arguments

:: String 
-> m Name

Fresh names

qReport

Arguments

:: Bool 
-> String 
-> m ()

Report an error (True) or warning (False) ...but carry on; use fail to stop

qRecover

Arguments

:: m a

the error handler

-> m a

action which may fail

-> m a

Recover from the monadic fail

qReify :: Name -> m Info

qClassInstances :: Name -> [Type] -> m [Name]

qLocation :: m Loc

qRunIO :: IO a -> m a

Input/output (dangerous)

Instances

class Lift t where

Methods

lift :: t -> Q Exp

Instances

Lift Bool 
Lift Char 
Lift Int 
Lift Integer 
Lift a => Lift [a] 
Lift a => Lift (Maybe a) 
(Lift a, Lift b) => Lift (Either a b) 
(Lift a, Lift b) => Lift (a, b) 
(Lift a, Lift b, Lift c) => Lift (a, b, c) 
(Lift a, Lift b, Lift c, Lift d) => Lift (a, b, c, d) 
(Lift a, Lift b, Lift c, Lift d, Lift e) => Lift (a, b, c, d, e) 
(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f) => Lift (a, b, c, d, e, f) 
(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g) => Lift (a, b, c, d, e, f, g) 

data Q a

Instances

runQ :: Quasi m => Q a -> m a

report :: Bool -> String -> Q ()

recover

Arguments

:: Q a

recover with this one

-> Q a

failing action

-> Q a 

reify :: Name -> Q Info

reify looks up information about the Name

location :: Q Loc

location gives you the Location at which this computation is spliced.

runIO :: IO a -> Q a

The runIO function lets you run an I/O computation in the Q monad. Take care: you are guaranteed the ordering of calls to runIO within a single Q computation, but not about the order in which splices are run.

Note: for various murky reasons, stdout and stderr handles are not necesarily flushed when the compiler finishes running, so you should flush them yourself.

classInstances :: Name -> [Type] -> Q [Name]

classInstances looks up instaces of a class

Names

data Name

For global names (NameG) we need a totally unique name, so we must include the name-space of the thing

For unique-numbered things (NameU), we've got a unique reference anyway, so no need for name space

For dynamically bound thing (NameS) we probably want them to in a context-dependent way, so again we don't want the name space. For example:

 let v = mkName "T" in [| data $v = $v |]

Here we use the same Name for both type constructor and data constructor

NameL and NameG are bound *outside* the TH syntax tree either globally (NameG) or locally (NameL). Ex:

 f x = $(h [| (map, x) |])

The map will be a NameG, and x wil be a NameL

These Names should never appear in a binding position in a TH syntax tree

Constructors

Name OccName NameFlavour 

mkName :: String -> Name

The string can have a ., thus Foo.baz, giving a dynamically-bound qualified name, in which case we want to generate a NameQ

Parse the string to see if it has a . in it so we know whether to generate a qualified or unqualified name It's a bit tricky because we need to parse

 Foo.Baz.x   as    Qual Foo.Baz x

So we parse it from back to front

nameBase :: Name -> String

Base, unqualified name.

data NameIs

Constructors

Alone 
Applied 
Infix 

The algebraic data types

data Dec

Constructors

FunD Name [Clause]
{ f p1 p2 = b where decs }
ValD Pat Body [Dec]
{ p = b where decs }
DataD Cxt Name [TyVarBndr] [Con] [Name]
{ data Cxt x => T x = A x | B (T x)
       deriving (Z,W)}
NewtypeD Cxt Name [TyVarBndr] Con [Name]
{ newtype Cxt x => T x = A (B x)
       deriving (Z,W)}
TySynD Name [TyVarBndr] Type
{ type T x = (x,x) }
ClassD Cxt Name [TyVarBndr] [FunDep] [Dec]
{ class Eq a => Ord a where ds }
InstanceD Cxt Type [Dec]
{ instance Show w => Show [w]
       where ds }
SigD Name Type
{ length :: [a] -> Int }
ForeignD Foreign 
PragmaD Pragma
{ {--} }
FamilyD FamFlavour Name [TyVarBndr] (Maybe Kind)
{ type family T a b c :: * }
DataInstD Cxt Name [Type] [Con] [Name]
{ data instance Cxt x => T [x] = A x 
                                | B (T x)
       deriving (Z,W)}
NewtypeInstD Cxt Name [Type] Con [Name]
{ newtype instance Cxt x => T [x] = A (B x)
       deriving (Z,W)}
TySynInstD Name [Type] Type
{ type instance T (Maybe x) = (x,x) }

Instances

data Exp

The CompE constructor represents a list comprehension, and takes a [Stmt]. The result expression of the comprehension is the *last* of these, and should be a NoBindS.

E.g. translation:

 [ f x | x <- xs ]
 CompE [BindS (VarP x) (VarE xs), NoBindS (AppE (VarE f) (VarE x))]

Constructors

VarE Name
{ x }
ConE Name
data T1 = C1 t1 t2; p = {C1} e1 e2
LitE Lit
{ 5 or c}
AppE Exp Exp
{ f x }
InfixE (Maybe Exp) Exp (Maybe Exp)
{x + y} or {(x+)} or {(+ x)} or {(+)}

It's a bit gruesome to use an Exp as the operator, but how else can we distinguish constructors from non-constructors? Maybe there should be a var-or-con type? Or maybe we should leave it to the String itself?

LamE [Pat] Exp
{  p1 p2 -> e }
TupE [Exp]
{ (e1,e2) }
CondE Exp Exp Exp
{ if e1 then e2 else e3 }
LetE [Dec] Exp
{ let x=e1;   y=e2 in e3 }
CaseE Exp [Match]
{ case e of m1; m2 }
DoE [Stmt]
{ do { p <- e1; e2 }  }
CompE [Stmt]
{ [ (x,y) | x <- xs, y <- ys ] }
ArithSeqE Range
{ [ 1 ,2 .. 10 ] }
ListE [Exp]
{ [1,2,3] }
SigE Exp Type
{ e :: t }
RecConE Name [FieldExp]
{ T { x = y, z = w } }
RecUpdE Exp [FieldExp]
{ (f x) { z = w } }

Instances

data Con

Constructors

NormalC Name [StrictType]
C Int a
RecC Name [VarStrictType]
C { v :: Int, w :: a }
InfixC StrictType Name StrictType
Int :+ a
ForallC [TyVarBndr] Cxt Con
forall a. Eq a => C [a]

Instances

data Type

Constructors

ForallT [TyVarBndr] Cxt Type
forall vars. ctxt -> type
VarT Name
a
ConT Name
T
TupleT Int
(,), (,,), etc.
ArrowT
->
ListT
[]
AppT Type Type
T a b
SigT Type Kind
t :: k

data Kind

Constructors

StarK
*
ArrowK Kind Kind
k1 -> k2

type Cxt

Arguments

 = [Pred]
(Eq a, Ord b)

data Pred

Constructors

ClassP Name [Type]
Eq (Int, a)
EqualP Type Type
F a ~ Bool

data Match

Constructors

Match Pat Body [Dec]
case e of { pat -> body where decs }

data Clause

Constructors

Clause [Pat] Body [Dec]
f { p1 p2 = body where decs }

data Body

Constructors

GuardedB [(Guard, Exp)]
f p { | e1 = e2 | e3 = e4 } where ds
NormalB Exp
f p { = e } where ds

data Guard

Constructors

NormalG Exp 
PatG [Stmt] 

data Stmt

Constructors

BindS Pat Exp 
LetS [Dec] 
NoBindS Exp 
ParS [[Stmt]] 

data Lit

Constructors

CharL Char 
StringL String 
IntegerL Integer

Used for overloaded and non-overloaded literals. We don't have a good way to represent non-overloaded literals at the moment. Maybe that doesn't matter?

RationalL Rational 
IntPrimL Integer 
WordPrimL Integer 
FloatPrimL Rational 
DoublePrimL Rational 
StringPrimL String

A primitive C-style string, type Addr#

Instances

data Pat

Pattern in Haskell given in {}

Constructors

LitP Lit
{ 5 or c }
VarP Name
{ x }
TupP [Pat]
{ (p1,p2) }
ConP Name [Pat]
data T1 = C1 t1 t2; {C1 p1 p1} = e
InfixP Pat Name Pat
foo ({x :+ y}) = e
TildeP Pat
{ ~p }
BangP Pat
{ !p }
AsP Name Pat
{ x @ p }
WildP
{ _ }
RecP Name [FieldPat]
f (Pt { pointx = x }) = g x
ListP [Pat]
{ [1,2,3] }
SigP Pat Type
{ p :: t }
ViewP Exp Pat
{ e -> p }

Instances

type FieldExp = (Name, Exp)

type FieldPat = (Name, Pat)

data ClassInstance

ClassInstance desribes a single instance of a class

Constructors

ClassInstance 

Fields

ci_dfun :: Name
 
ci_tvs :: [TyVarBndr]
 
ci_cxt :: Cxt
 
ci_cls :: Name
 
ci_tys :: [Type]
 

data FunDep

Constructors

FunDep [Name] [Name] 

data Info

Obtained from reify in the Q Monad.

Constructors

ClassI Dec [ClassInstance]

A class is reified to its declaration and a list of its instances

ClassOpI Name Type Name Fixity 
TyConI Dec 
PrimTyConI Name Int Bool 
DataConI Name Type Name Fixity 
VarI Name Type (Maybe Dec) Fixity 
TyVarI Name Type 

type CharPos = (Int, Int)

Internal functions

returnQ :: a -> Q a

bindQ :: Q a -> (a -> Q b) -> Q b

sequenceQ :: [Q a] -> Q [a]

data NameFlavour

Constructors

NameS

An unqualified name; dynamically bound

NameQ ModName

A qualified name; dynamically bound

NameU Int#

A unique local name

NameL Int#

Local name bound outside of the TH AST

NameG NameSpace PkgName ModName

Global name bound outside of the TH AST: An original name (occurrences only, not binders)

Need the namespace too to be sure which thing we are naming

Instances

Eq NameFlavour 
Data NameFlavour

Although the NameFlavour type is abstract, the Data instance is not. The reason for this is that currently we use Data to serialize values in annotations, and in order for that to work for Template Haskell names introduced via the 'x syntax we need gunfold on NameFlavour to work. Bleh!

The long term solution to this is to use the binary package for annotation serialization and then remove this instance. However, to do _that_ we need to wait on binary to become stable, since boot libraries cannot be upgraded seperately from GHC itself.

This instance cannot be derived automatically due to bug #2701

Ord NameFlavour 
Typeable NameFlavour 

data NameSpace

Constructors

VarName

Variables

DataName

Data constructors

TcClsName

Type constructors and classes; Haskell has them in the same name space for now.

type Uniq = Int

mkNameL :: String -> Uniq -> Name

Only used internally

mkNameU :: String -> Uniq -> Name

Only used internally

tupleTypeName

Arguments

:: Int 
-> Name

Type constructor

tupleDataName

Arguments

:: Int 
-> Name

Data constructor