| v

ERLANG

SSH

Copyright © 2005-2015 Ericsson AB. All Rights Reserved.
SSH 4.0
June 23, 2015

Copyright © 2005-2015 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 23, 2015

Ericsson AB. All Rights Reserved.: SSH | 1

1.1 Introduction

1 SSH User's Guide

The Erlang Secure Shell (SSH) application, ssh, implements the SSH Transport Layer Protocol and provides SSH
File Transfer Protocol (SFTP) clients and servers.

1.1 Introduction

SSH is a protocol for secure remote logon and other secure network services over an insecure network.

1.1.1 Scope and Purpose

SSH providesasingle, full-duplex, and byte-oriented connection between client and server. The protocol also provides
privacy, integrity, server authentication, and man-in-the-middle protection.

The ssh application is an implementation of the SSH Transport, Connection and Authentication Layer Protocolsin
Erlang. It provides the following:

e AP functions to write customized SSH clients and servers applications
e TheErlang shell available over SSH

 AnSFTPclient (ssh_sftp) and server (ssh_sftpd)

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of public keys.

1.1.3 SSH Protocol Overview
Conceptually, the SSH protocol can be partitioned into four layers:

SSH Client/Server Applications

Connection Protocol | Authentication Protocol

Transport Protocol

TCP/IP Stack

Figure 1.1: SSH Protocol Architecture

2 | Ericsson AB. All Rights Reserved.: SSH

1.1 Introduction

Transport Protocol

The SSH Transport Protocol is a secure, low-level transport. It provides strong encryption, cryptographic host
authentication, and integrity protection. A minimum of Message Authentication Code (MAC) and encryption
algorithms are supported. For details, see the ssh(3) manual pagein ssh.

Authentication Protocol

The SSH Authentication Protocol is a general -purpose user authentication protocol run over the SSH Transport Layer
Protocol. The ssh application supports user authentication as follows:
« Using public key technology. RSA and DSA, X509-certificates are not supported.

« Using keyboard-interactive authentication. Thisis suitable for interactive authentication methods that do
not need any special software support on the client side. Instead, all authentication datais entered from the
keyboard.

» Using a pure password-based authentication scheme. Here, the plain text password is encrypted before sent over
the network.

Several configuration options for authentication handling are available in ssh:connect/[3,4] and ssh:daemon/[2,3].

The public key handling can be customized by implementing the following behaviours from ssh:

e Module ssh_client_key api.
e Module ssh_server_key api.

Connection Protocol

The SSH Connection Protocol provides application-support services over the transport pipe, for example, channel
multiplexing, flow control, remote program execution, signal propagation, and connection forwarding. Functions for
handling the SSH Connection Protocol can be found in the module ssh_connection in ssh.

Channels

All terminal sessions, forwarded connections, and so on, are channels. Multiple channels are multiplexed into asingle
connection. All channels are flow-controlled. This means that no data is sent to a channel peer until a message is
received to indicate that window space is available. Theinitial window size specifies how many bytes of channel data
that can be sent to the channel peer without adjusting the window. Typically, an SSH client opens a channel, sends
data (commands), receives data (control information), and then closesthe channel. The ssh_channel behaviour handles
generic parts of SSH channel management. This makesit easy to write your own SSH client/server processes that use
flow-control and thus opens for more focus on the application logic.

Channels come in the following three flavors:

e Subsystem - Named services that can be run as part of an SSH server, such as SFTP (ssh_sftpd), that is built into
the SSH daemon (server) by default, but it can be disabled. The Erlang ssh daemon can be configured to run
any Erlang- implemented SSH subsystem.

* Shell - Interactive shell. By default the Erlang daemon runs the Erlang shell. The shell can be customized by
providing your own read-eval-print loop. Y ou can also provide your own Command-Line Interface (CLI)
implementation, but that is much more work.

« Exec - One-time remote execution of commands. See function ssh_connection: exec/4 for more information.

1.1.4 Where to Find More Information
For detailed information about the SSH protocol, refer to the following Request for Comments(RFCs):

* RFC 4250 - Protocol Assigned Numbers
« RFC 4251 - Protocol Architecture
* RFC 4252 - Authentication Protocol

Ericsson AB. All Rights Reserved.: SSH | 3

href
href
href

1.2 Getting Started

e RFC 4253 - Transport Layer Protocol

e RFC 4254 - Connection Protocol

 RFC 4255 - Key Fingerprints

* RFC 4344 - Transport Layer Encryption Modes
 RFC 4716 - Public Key File Format

1.2 Getting Started

1.2.1 General Information

Thefollowing examples use the utility function ssh:start/0 to start all needed applications(cr ypt o, publ i ¢c_key,
andssh). All examplesareruninan Erlang shell, or in abash shell, using opensshtoillustrate how the s sh application
can be used. The examples are run as the user ot pt est on alocal network where the user is authorized to log in
over ssh to the host tarlop.

If nothing else is stated, it is presumed that the ot pt est user has an entry in the authorized keys file of tarlop
(allowed to log in over ssh without entering a password). Also, tarlop is aknown host intheknown_host s file of
the user ot pt est . This means that host-verification can be done without user-interaction.

1.2.2 Using the Erlang ssh Terminal Client

Theuser ot pt est , which has bash asdefault shell, usesthessh: shel | / 1 client to connect to the openssh daemon
running on a host called tarlop:

1> ssh:start().

ok

2> {ok, S} = ssh:shell("tarlop").
otptest@tarlop:> pwd
/home/otptest

otptest@tarlop:> exit

logout

3>

1.2.3 Running an Erlang ssh Daemon

Thesyst em di r option must be a directory containing a host key file and it defaultsto / et ¢/ ssh. For details,
see Section Configuration Filesin ssh(6).

Note:
Normally, the/ et ¢/ ssh directory is only readable by root.

Theoptionuser _di r defaultsto directory users ~/. ssh.

Sep 1. To run the example without root privileges, generate new keys and host keys:

$bash> ssh-keygen -t rsa -f /tmp/ssh _daemon/ssh host rsa key
[...]

$bash> ssh-keygen -t rsa -f /tmp/otptest user/.ssh/id rsa
[...]

4 | Ericsson AB. All Rights Reserved.: SSH

href
href
href
href
href

1.2 Getting Started

Sep 2. Create the file / t np/ ot pt est _user/. ssh/ aut hori zed_keys and add the content of /t np/
ot ptest _user/.ssh/id_rsa. pub.

Sep 3. Start the Erlang ssh daemon:

1> ssh:start().
ok
2> {ok, Sshd} = ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"}]).
{ok,<0.54.0>}
3>

Sep 4. Use the openssh client from a shell to connect to the Erlang ssh daemon:

$bash> ssh tarlop -p 8989 -i /tmp/otptest user/.ssh/id rsa\
-0 UserKnownHostsFile=/tmp/otptest user/.ssh/known hosts
The authenticity of host 'tarlop' can't be established.
RSA key fingerprint is 14:81:80:50:b1:1f:57:dd:93:a8:2d:2f:dd:90:ae:a8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'tarlop' (RSA) to the list of known hosts.
Eshell V5.10 (abort with ~G)
1>

There are two ways of shutting down an ssh daemon, see Step 5a and Sep 5b.

Sep 5a. Shut down the Erlang ssh daemon so that it stops the listener but leaves existing connections, started by
the listener, operational:

3> ssh:stop listener(Sshd).
ok
4>

Sep 5b. Shut down the Erlang ssh daemon so that it stops the listener and all connections started by the listener:

3> ssh:stop _daemon(Sshd)
ok
4>

1.2.4 One-Time Execution

In the following example, the Erlang shell isthe client process that receives the channd replies.

Ericsson AB. All Rights Reserved.: SSH | 5

1.2 Getting Started

Note:

The number of received messages in this example depends on which OS and which shell that is used on the
machine running the ssh daemon. See also ssh_connection: exec/4.

Do a one-time execution of aremote command over ssh:

1> ssh:start().

ok

2> {ok, ConnectionRef} = ssh:connect("tarlop", 22, []).
{ok,<0.57.0>}

3>{ok, ChannelId} = ssh connection:session channel(ConnectionRef, infinity).
{ok,0}

4> success = ssh_connection:exec(ConnectionRef, Channelld, "pwd", infinity).
5> flush().

Shell got {ssh cm,<0.57.0>,{data,0,0,<<"/home/otptest\n">>}}
Shell got {ssh cm,<0.57.0>,{eof,0}}

Shell got {ssh cm,<0.57.0>,{exit status,0,0}}

Shell got {ssh cm,<0.57.0>,{closed,0}}

ok

6>

Notice that only the channel is closed. The connection is still up and can handle other channels:

6> {ok, NewChannellId} = ssh connection:session channel(ConnectionRef, infinity).
{ok, 1}

1.2.5 SFTP Server
Start the Erlang ssh daemon with the SFTP subsystem:

1> ssh:start().
ok
2> ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"},
{subsystems, [ssh sftpd:subsystem spec([{cwd, "/tmp/sftp/example"}])
131).
{ok,<0.54.0>}
3>

Run the OpenSSH SFTP client:

$bash> sftp -oPort=8989 -o IdentityFile=/tmp/otptest user/.ssh/id rsa\
-0 UserKnownHostsFile=/tmp/otptest user/.ssh/known hosts tarlop

Connecting to tarlop...

sftp> pwd

Remote working directory: /tmp/sftp/example

sftp>

6 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

1.2.6 SFTP Client
Fetch afile with the Erlang SFTP client:

1> ssh:start().

ok

2> {ok, ChannelPid, Connection} = ssh sftp:start channel("tarlop", [1).
{ok,<0.57.0>,<0.51.0>}

3> ssh sftp:read file(ChannelPid, "/home/otptest/test.txt").
{ok,<<"This is a test file\n">>}

1.2.7 SFTP Client with TAR Compression and Encryption

Example of writing and then reading atar file follows:

{ok,HandleWrite} = ssh sftp:open tar(ChannelPid, ?tar file name, [writel),

ok = erl tar:add(HandleWrite,),

ok = erl tar:add(HandleWrite,),

6k.= erl tar:add(HandleWrite,),

ok = erl tar:close(HandleWrite),

%% And for reading

{ok,HandleRead} = ssh sftp:open tar(ChannelPid, ?tar file name, [read]),
{ok,NameValueList} = erl tar:extract(HandleRead, [memory]),

ok = erl tar:close(HandleRead),

The previous write and read example can be extended with encryption and decryption as follows:

%% First three parameters depending on which crypto type we select:
Key = <<"This is a 256 bit key. abcdefghi">>,

IvecO = crypto:rand bytes(16),

DataSize = 1024, % DataSize rem 16 = 0 for aes cbc

%% Initialization of the CryptoState, in this case it is the Ivector.
InitFun = fun() -> {ok, Ivec@, DataSize} end,

%% How to encrypt:
EncryptFun =
fun(PlainBin,Ivec) ->
EncryptedBin = crypto:block encrypt(aes cbc256, Key, Ivec, PlainBin),
{ok, EncryptedBin, crypto:next iv(aes cbc,EncryptedBin)}
end,

%% What to do with the very last block:
CloseFun =
fun(PlainBin, Ivec) ->
EncryptedBin = crypto:block encrypt(aes cbc256, Key, Ivec,
pad(16,PlainBin) %% Last chunk
) ’
{ok, EncryptedBin}
end,

Ericsson AB. All Rights Reserved.: SSH | 7

1.2 Getting Started

Cw = {InitFun,EncryptFun,CloseFun},
{ok,HandleWrite} = ssh sftp:open tar(ChannelPid, ?tar file name, [write,{crypto,Cw}]),
ok = erl tar:add(HandleWrite,),

ok = erl tar:add(HandleWrite,),
6k.= erl tar:add(HandleWrite,),
ok = erl tar:close(HandleWrite),

%% And for decryption (in this crypto example we could use the same InitFun
%% as for encryption):
DecryptFun =
fun(EncryptedBin,Ivec) ->
PlainBin = crypto:block decrypt(aes cbc256, Key, Ivec, EncryptedBin),
{ok, PlainBin, crypto:next iv(aes cbc,EncryptedBin)}
end,

Cr = {InitFun,DecryptFun},

{ok,HandleRead} = ssh sftp:open tar(ChannelPid, ?tar file name, [read,{crypto,Cw}]),
{ok,NameValuelList} = erl tar:extract(HandleRead, [memory]),

ok = erl tar:close(HandleRead),

1.2.8 Creating a Subsystem

A small ssh subsystem that echoes N bytes can be implemented as shown in the following example:

-module(ssh _echo server).
-behaviour(ssh subsystem).
-record(state, {
nr
id,
cm
3.
-export([init/1, handle msg/2, handle ssh msg/2, terminate/2]).

init([N]) ->
{ok, #state{n = N}}.

handle msg({ssh _channel up, Channelld, ConnectionManager}, State) ->
{ok, State#state{id = Channelld,
cm = ConnectionManager}}.

handle ssh msg({ssh cm, CM, {data, ChannelIld, 0, Data}}, #state{n = N} = State) ->
M =N - size(Data),
case M > 0 of
true ->
ssh_connection:send(CM, Channelld, Data),
{ok, State#state{n = M}};
false ->
<<SendData:N/binary, /binary>> = Data,
ssh_connection:send(CM, Channelld, SendData),
ssh_connection:send eof(CM, Channelld),
{stop, Channelld, State}
end;
handle ssh msg({ssh cm, ConnectionManager,
{data, Channelld, 1, Data}}, State) ->
error_logger:format(standard error, " ~p~n", [binary to list(Data)]),
{ok, State};

handle ssh msg({ssh cm, ConnectionManager, {eof, Channelld}}, State) ->
{ok, State};

8 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

handle ssh msg({ssh cm, , {signal, , }}, State) ->
%% Ignore signals according to RFC 4254 section 6.9.
{ok, State};
handle ssh msg({ssh cm, , {exit signal, Channelld, , Error, }},
State) ->

{stop, Channelld, State};

handle ssh msg({ssh cm, , {exit status, Channelld, Status}}, State) ->
{stop, Channelld, State}.

terminate(Reason, State) ->
ok.

The subsystem can be run on the host tarlop with the generated keys, as described in Section Running an Erlang
ssh Daemon:

1> ssh:start().
ok
2> ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"}
{subsystems, [{"echo n", {ssh echo server, [10]}}1}]1).
{ok,<0.54.0>}
3>

1> ssh:start().

ok

2>{ok, ConnectionRef} = ssh:connect("tarlop", 8989, [{user dir, "/tmp/otptest user/.ssh"}]).
{ok,<0.57.0>}

3>{ok, Channelld} = ssh connection:session channel(ConnectionRef, infinity).

4> success = ssh connection:subsystem(ConnectionRef, Channelld, "echo n", infinity).

5> ok = ssh _connection:send(ConnectionRef, Channelld, "0123456789", infinity).

6> flush().

{ssh msg, <0.57.0>, {data, 0, 1, "0123456789"}}

{ssh msg, <0.57.0>, {eof, 0}}

{ssh _msg, <0.57.0>, {closed, 0}}

7> {error, closed} = ssh connection:send(ConnectionRef, Channelld, "10", infinity).

See also ssh_channel(3).

Ericsson AB. All Rights Reserved.: SSH | 9

1.2 Getting Started

2 Reference Manual

The ssh application is an Erlang implementation of the Secure Shell Protocol (SSH) as defined by RFC 4250 - 4254.

10 | Ericsson AB. All Rights Reserved.: SSH

SSH

SSH

Application

Thessh applicationisanimplementation of the SSH protocol in Erlang. ssh offers API functionsto write customized
SSH clients and servers as well as making the Erlang shell available over SSH. An SFTP client, ssh_sft p, and
server, ssh_sft pd, areaso included.

DEPENDENCIES

The ssh application uses the applications publ i ¢_key and cr ypt o to handle public keys and encryption. Hence,
these applications must be loaded for the ssh application to work. In an embedded environment this means that they
must be started with appl i cati on: start/[1, 2] beforethessh application is started.

CONFIGURATION

The s s h application does not have an application- specific configurationfile, as described in application(3). However,
by default it use the following configuration files from OpenSSH:

¢ known_hosts

e authorized_keys

e authorized keys2

e id_dsa

e idrsa

 ssh_host _dsa_key

e ssh_host _rsa_key

By default, ssh looksfori d_dsa,i d_rsa,known_host s, andaut hori zed_keys in~/.ssh, and for the host
key filesin/ et ¢/ ssh. These locations can be changed by the optionsuser _di r andsystem dir.

Public key handling can also be customized through a callback module that implements the behaviors
ssh_client_key api and ssh_server_key api.

Public Keys

i d_dsaandi d_rsa arethe users private key files. Notice that the public key is part of the private key so thessh
application does not use thei d_<*>. pub files. These are for the user's convenience when it is needed to convey
the user's public key.

Known Hosts

The known_host s file contains a list of approved servers and their public keys. Once a server is listed, it can be
verified without user interaction.

Authorized Keys

Theaut hori zed_key filekeepstrack of the user's authorized public keys. The most common use of thisfileisto
let userslog in without entering their password, which is supported by the Erlang ssh daemon.

Host Keys

RSA and DSA host keys are supported and are expected to be found in files named ssh_host rsa key and
ssh_host dsa_key.

Ericsson AB. All Rights Reserved.: SSH | 11

SSH

ERROR LOGGER AND EVENT HANDLERS

The ssh application uses the default OTP error logger to log unexpected errors or print information about special
events.

SEE ALSO
application(3)

12 | Ericsson AB. All Rights Reserved.: SSH

ssh

ssh

Erlang module

Interface module for the ssh application.

SSH

» For application dependencies see ssh(6)

e Supported SSH versionis 2.0.

e Supported public key algorithms: ssh-rsa and ssh-dss.

e Supported MAC agorithms: hmac-sha2-256 and hmac-shal.

* Supported encryption algorithms: aes128-ctr, aes128-cb and 3des-cbc.
» Supported key exchange algorithms: diffie-hellman-groupl-shal.

e Supported compression algorithms: none, zlib, zlib@openssh.com,

* Supports unicode filenames if the emulator and the underlaying OS support it. See section DESCRIPTION in
thefile manual pagein ker nel for information about this subject.

e Supportsunicodein shell and CLI.

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both:

bool ean() =
true | false
string() =
[byte()]
ssh_daenon_ref() =
opaque() - asreturned by ssh: daenmon/ [1, 2, 3]
ssh_connection_ref () =
opaque() - asreturned by ssh: connect/ 3
i p_address() =
i net::ip_address
subsystem spec() =
{subsystem nane(), {channel callback(), channel _init_args()}}
subsystem nane() =
string()
channel cal |l back() =

at om() - Name of the Erlang module implementing the subsystem using the ssh_channel behavior, see
ssh_channel(3)

channel init_args() =
list()

Ericsson AB. All Rights Reserved.: SSH | 13

ssh

algs list() =
list(alg entry())
alg entry() =

{kex, sinmple_algs()} | {public_key, sinmple_algs()} | {cipher, double_algs()}
| {mac, double_algs()} | {conpression, double_algs()}

sinmple_algs() =
list(atom())
doubl e_al gs() =

[{client2serverlist,sinple_algs()},{server2client,sinple _algs()}]
sinpl e_al gs()

Exports

close(ConnectionRef) -> ok
Types:
Connecti onRef = ssh_connection_ref()

Closes an SSH connection.

connect(Host, Port, Options) ->

connect(Host, Port, Options, Timeout) -> {ok, ssh connection ref()} | {error,
Reason}

Types:
Host = string()
Port = integer()

22 isdefault, the assigned well-known port number for SSH.

Options = [{Option, Val ue}]

Timeout = infinity | integer()

Negotiation time-out in milli-seconds. The default valueisi nf i ni t y. For connection time-out, use option
{connect _timeout, timeout()}.

Connectsto an SSH server. No channel is started. Thisis done by calling ssh_connection: session_channel/[2, 4].
Options:
{inet, inet | inet6}
IP version to use.
{user _dir, string()}

Sets the user directory, that is, the directory containing ssh configuration files for the user, such as
known_hosts,id _rsa, id_dsa,andauthorized_key. Defaultsto the directory normally referred to
as~/ . ssh.

{dsa_pass_phrase, string()}

If the user DSA key is protected by a passphrase, it can be supplied with this option.
{rsa_pass_phrase, string()}

If the user RSA key is protected by a passphrase, it can be supplied with this option.

14 | Ericsson AB. All Rights Reserved.: SSH

ssh

{silently accept _hosts, bool ean()}
Whent r ue, hosts are added to the file known_host s without asking the user. Defaultsto f al se.
{user_interaction, boolean()}

If f al se, disablesthe client to connect to the server if any user interaction is needed, such as accepting the server
to be added to the known_host s file, or supplying a password. Defaultsto t r ue. Even if user interaction is
alowed it can be suppressed by other options, suchassi | ent | y_accept _host s andpasswor d. However,
those optins are not always desirable to use from a security point of view.

{di sconnectfun, fun(Reason:term()) -> _}
Provides afun to implement your own logging when a server disconnects the client.
{unexpectedfun, fun(Message:term(), Peer) -> report | skip }

Provides a fun to implement your own logging or other action when an unexpected message arrives. If the fun
returnsr eport the usual info report isissued but if ski p isreturned no report is generated.

Peer isintheformat of { Host , Port}.
{public_key alg, 'ssh-rsa'" | 'ssh-dss'}

Note:

This option is kept for compatibility. It is ignored if the preferred_al gorithnms option is
used. The equivalence of {public_key alg,'ssh-dss'} is {preferred_al gorithns,
[{public_key,['ssh-dss','ssh-rsa']}]}.

Sets the preferred public key algorithm to use for user authentication. If the preferred algorithm fails, the other
agorithmistried. Thedefault istotry ' ssh-rsa' first.

{pref_public_key algs, list()}

Note:

This option is kept for compatibility. It is ignored if the pref erred_al gori t hns option is used.
The equivalence of { pref _public_key al gs,['ssh-dss']} is{preferred_al gorithns,
[{public key,['ssh-dss']}]}.

List of public key agorithms to try to use. ' ssh-rsa' and ' ssh-dss' are avalable. Overrides
{public_key_alg, 'ssh-rsa' | 'ssh-dss'}

{preferred_al gorithns, algs list()}
List of agorithms to use in the algorithm negotiation. The default al gs_|i st () can be obtained from
default_algorithms/O.

Hereis an example of this option:

{preferred algorithms,
[{public key,['ssh-rsa', 'ssh-dss']},
{cipher, [{client2server,['aes128-ctr'l},
{server2client,['aes128-cbhc', '3des-cbc']1}1},
{mac, ['hmac-sha2-256"', 'hmac-shal']l},

Ericsson AB. All Rights Reserved.: SSH | 15

ssh

{compression, [none,zlib]}

}

The example specifies different agorithms in the two directions (client2server and server2client), for cipher but
specifies the same algorithms for mac and compression in both directions. The kex (key exchange) and public
key algorithms are set to their default values, kex isimplicit but public_key is set explicitly.

Warning:

Changing the values can make a connection less secure. Do not change unless you know exactly what you
are doing. If you do not understand the values then you are not supposed to change them.

{connect tineout, timeout()}
Setsatime-out on the transport layer connection. For gen_t cp thetimeisin milli-seconds and the default value
isinfinity.

{user, string()}

Provides ausername. If this option is not given, ssh reads from the environment (LOGNAME or USER on UNI X,
USERNAME on Windows).

{password, string()}

Provides a password for password authentication. If this option is not given, the user is asked for a password, if
the password authentication method is attempted.

{key _cb, atom()}

Module implementing the behaviour ssh_client_key api. Can be used to customize the handling of public keys.
{qui et _node, atom() = bool ean()}

If t r ue, the client does not print anything on authorization.
{id_string, random| string()}

The string that the client presents to a connected server initially. The default value is "Erlang/VSN" where VSN
is the ssh application version number.

The value r andomwill cause arandom string to be created at each connection attempt. Thisisto make it a bit
more difficult for amalicious peer to find the ssh software brand and version.

{fd, file_descriptor()}

Allows an existing file descriptor to be used (by passing it on to the transport protocol).
{rekey_limt, integer()}

Provides, in bytes, when rekeying is to be initiated. Defaults to once per each GB and once per hour.
{idle_tine, integer()}

Sets atime-out on a connection when no channels are active. Defaultstoi nfinity.

{ssh_msg_debug_fun, fun(ConnectionRef::ssh _connection_ref(),
Al waysDi spl ay: : bool ean(), Msg::binary(), LanguageTag::binary()) -> _}

Provideafun toimplement your own logging of the SSH message SSH_MSG_DEBUG. Thelast three parameters
are from the message, see RFC4253, section 11.3. The Connect i onRef isthe reference to the connection on
which the message arrived. The return value from the fun is not checked.

16 | Ericsson AB. All Rights Reserved.: SSH

ssh

The default behaviour is ignore the message. To get a printout for each message with Al waysDi spl ay
= true, use for example {ssh_nsg_debug fun, fun(_,true,M)-> io:fornmat("DEBUG

~p~n", [M) end}

connection info(ConnectionRef, [Option]) ->[{Option, Value}]

Types:
Option = client_version | server_version | user | peer | sockname
Val ue = [option_val ue()]
option_value() = {{Major::integer(), Mnor::integer()},
VersionString::string()} | User::string() | Peer::{inet:hostname(),
{inet::ip_adress(), inet::port_nunber()}} | Socknane::{inet::ip_adress(),
i net::port_nunber()}

Retrieves information about a connection.

daemon(Port) ->
daemon(Port, Options) ->

daemon(HostAddress, Port, Options) -> {ok, ssh daemon ref()} | {error,
atom()}

Types.
Port = integer()
Host Address = i p_address() | any
Options = [{Option, Val ue}]
Option = aton()
Value = term))
Starts a server listening for SSH connections on the given port.
Options:
{inet, inet | ineté6}
IP version to use when the host addressis specified asany.
{subsystens, [subsystem spec()]}

Provides specifications for handling of subsystems. The "sftp" subsystem specification is retrieved by
calling ssh_sftpd: subsystem spec/ 1. If the subsystems option is not present, the value of
[ssh_sftpd: subsystem spec([])] isused. The option can be set to the empty list if you do not want
the daemon to run any subsystems.

{shell, {Module, Function, Args} | fun(string() = User) - > pid() |
fun(string() = User, ip_address() = PeerAddr) -> pid()}

Defines the read-eval-print loop used when a shell is requested by the client. The default is to use the Erlang
shell: {shel I, start, []}

{ssh_cli, {channel _callback(), channel _init_args()} | no_cli}

Providesyour own CLI implementation, that is, achannel callback module that implements a shell and command
execution. The shell read-eval-print loop can be customized, using the option shel | . This means less work
than implementing an own CLI channel. If setto no_cl i , the CLI channels are disabled and only subsystem
channels are allowed.

Ericsson AB. All Rights Reserved.: SSH | 17

ssh

{user_dir, string()}

Sets the user directory. That is, the directory containing ssh configuration files for the user, such as
known_hosts,id rsa, id_dsa,andauthorized_key. Defaultsto the directory normally referred to
as~/ . ssh.

{systemdir, string()}

Sets the system directory, containing the host key files that identify the host keys for ssh. Defaultsto / et ¢/
ssh. For security reasons, this directory is normally accessible only to the root user.

{aut h_net hods, string()}

Comma-separated string that determines which authentication methods that the server is to support and in what
order they aretried. Defaultsto " publ i ckey, keyboar d-i nt eracti ve, passwor d”

{auth_nethod kb _interactive_data, PronptTexts}

wher e:

Pronpt Texts = kb_int _tuple() | fun(Peer::{IP::tuple(),Port::integer()},
User::string(), Service::string()) -> kb_int_tuple()

kb_int _tuple() = {Nane::string(), Instruction::string(), Pronpt::string(),
Echo: : bool ean() }

Sets the text strings that the daemon sends to the client for presentation to the user when using keyboar -
i nt eracti ve authentication. If the fun/3 is used, it is called when the actual authentication occurs and may
therefore return dynamic data like time, remote ip etc.

The parameter Echo guides the client about need to hide the password.
The default value is: {auth_met hod_kb_interactive _data, {"SSH server", "Enter

password for \""++User++"\"" "password: ", false}>
{user_passwords, [{string() = User, string() = Password}]}

Provides passwords for password authentication. The passwords are used when someone tries to connect to
the server and public key user-authentication fails. The option provides a list of valid usernames and the
corresponding passwords.

{password, string()}

Provides aglobal password that authenticates any user. From a security perspective this option makes the server
very vulnerable.

{preferred_algorithns, algs_list()}

List of algorithms to use in the algorithm negotiation. The default al gs_I i st () can be obtained from
default_algorithms/O.

Here is an example of this option:

{preferred algorithms,
[{public key,['ssh-rsa', 'ssh-dss'l]},
{cipher, [{client2server,['aes128-ctr']},
{server2client,['aes128-cbc', '3des-cbc']}]1},
{mac, ['hmac-sha2-256"', 'hmac-shal']l},
{compression, [none,zlib]}

}

The example specifies different agorithms in the two directions (client2server and server2client), for cipher but
specifies the same algorithms for mac and compression in both directions. The kex (key exchange) and public
key algorithms are set to their default values, kex isimplicit but public_key is set explicitly.

18 | Ericsson AB. All Rights Reserved.: SSH

ssh

Warning:

Changing the values can make a connection less secure. Do not change unless you know exactly what you
are doing. If you do not understand the values then you are not supposed to change them.

{pwdfun, fun(User::string(), password::string()) -> bool ean()}

Provides afunction for password validation. Thisfunction is called with user and password as strings, and returns
t r ue if the password isvalid and f al se otherwise.

{negotiation_timeout, integer()}

Maximum time in milliseconds for the authentication negotiation. Defaults to 120000 (2 minutes). If the client
failsto log in within this time, the connection is closed.

{max_sessi ons, pos_integer()}

The maximum number of simultaneous sessions that are accepted at any time for this daemon. This includes
sessionsthat are being authorized. Thus, if set to N, and N clients have connected but not started the login process,
connection attempt N+1 is aborted. If N connections are authenticated and still logged in, no more logins are
accepted until one of the existing ones log out.

The counter is per listening port. Thus, if two daemons are started, onewith{ max_sessi ons, N} and the other
with { max_sessi ons, M, intotal N+Mconnections are accepted for the whole ssh application.

Noticethat if paral | el _| ogi nisf al se, only one client at atime can be in the authentication phase.
By default, this option is not set. This means that the number is not limited.
{parall el | ogin, boolean()}

If set to false (the default value), only oneloginis handled at atime. If set to true, an unlimited number of login
attempts are allowed simultaneously.

If the max_sessi ons option isset to Nand paral | el _| ogi n issettotrue, the maximum number of
simultaneous login attempts at any time is limited to N- K, where K is the number of authenticated connections
present at this daemon.

Warning:

Do not enable par al | el _I ogi ns without protecting the server by other means, for example, by the
max_sessi ons option or afirewall configuration. If set to t r ue, there is no protection against DOS
attacks.

{m ni mal _renot e_max_packet _si ze, non_negative_integer()}

The least maximum packet size that the daemon will accept in channel open requests from the client. The default
valueisO.

{id_string, random| string()}

The string the daemon will present to a connecting peer initially. The default valueis "Erlang/VSN" where VSN
is the ssh application version number.

The value r andomwill cause a random string to be created at each connection attempt. Thisisto make it a bit
more difficult for amalicious peer to find the ssh software brand and version.

Ericsson AB. All Rights Reserved.: SSH | 19

ssh

{key_cb, atom()}
Module implementing the behaviour ssh_server_key api. Can be used to customize the handling of public keys.

{profile, atom)}

Usedtogether withi p- addr ess andpor t touniquely identify assh daemon. Thiscan beuseful inavirtualized
environment, where there can be morethat one server that hasthe samei p- addr ess and por t . If thisproperty
isnot explicitly set, it is assumed that the thei p- addr ess and por t uniquely identifies the SSH daemon.

{fd, file_descriptor()}
Allows an existing file-descriptor to be used (passed on to the transport protocol).

{failfun, fun(User::string(), PeerAddress::ip_address(), Reason::tern()) ->
_}

Provides afun to implement your own logging when a user fails to authenticate.
{connectfun, fun(User::string(), PeerAddress::ip_address(), Method::string())
- >_}
Provides afun to implement your own logging when a user authenticates to the server.
{di sconnectfun, fun(Reason:term()) -> _}
Provides afun to implement your own logging when a user disconnects from the server.
{unexpect edf un, fun(Message:term(), Peer) -> report | skip }

Provides a fun to implement your own logging or other action when an unexpected message arrives. If the fun
returnsr eport the usual info report isissued but if ski p is returned no report is generated.

Peer isintheformat of { Host , Port}.

{ssh_msg_debug_fun, fun(ConnectionRef::ssh_connection_ref(),
Al waysDi spl ay: : bool ean(), Msg::binary(), LanguageTag::binary()) -> _}

Provide afun toimplement your own logging of the SSH message SSH_MSG_DEBUG. Thelast three parameters
are from the message, see RFC4253, section 11.3. The Connect i onRef isthe reference to the connection on
which the message arrived. The return value from the fun is not checked.

The default behaviour is ignore the message. To get a printout for each message with Al waysDi spl ay
= true, use for example {ssh_nsg_debug fun, fun(_,true,M)-> io:format (" DEBUG

~p~n", [M) end}

default algorithms() -> algs list()

Returns a key-vaue list, where the keys are the different types of algorithms and the values are the agorithms
themselves. An example:

20> ssh:default algorithms().
[{kex,['diffie-hellman-groupl-shal'l},
{public key,['ssh-rsa', 'ssh-dss'l},
{cipher, [{client2server,['aesl128-ctr', 'aesl28-cbhc', '3des-cbc']},
{server2client,['aes128-ctr', 'aes128-cbc', '3des-cbc']}1},
{mac, [{client2server, ['hmac-sha2-256"', 'hmac-shal'l},
{server2client, ['hmac-sha2-256"', 'hmac-shal']1}1},
{compression, [{client2server, [none,zlib]},
{server2client, [none,zlib]}]1}]
21>

20 | Ericsson AB. All Rights Reserved.: SSH

ssh

shell(Host) ->
shell(Host, Option) ->
shell(Host, Port, Option) ->

Types:
Host = string()
Port = integer()

Options - see ssh:connect/3

Starts an interactive shell over an SSH server on the given Host . The function waitsfor user input, and does not return
until the remote shell is ended (that is, exit from the shell).

start() ->
start(Type) -> ok | {error, Reason}
Types:

Type = permanent | transient | tenporary
Reason = term()

Utility function that startsthe applicationscr ypt o, publ i ¢c_key, and ssh. Default typeist enpor ar y. For more
information, see the application(3) manual pagein ker nel .

stop() -> ok | {error, Reason}
Types:
Reason = term()
Stops the ssh application. For more information, see the application(3) manual pagein ker nel .

stop_daemon(DaemonRef) ->
stop_daemon(Address, Port) -> ok
Types.
DaenonRef = ssh_daenon_ref ()
Address = i p_address()
Port = integer()
Stops the listener and all connections started by the listener.

stop_listener(DaemonRef) ->
stop listener(Address, Port) -> ok
Types:
DaenonRef = ssh_daenon_ref ()
Address = i p_address()
Port = integer()
Stops the listener, but leaves existing connections started by the listener operational.

Ericsson AB. All Rights Reserved.: SSH | 21

ssh_channel

ssh_channel

Erlang module

SSH services (clients and servers) are implemented as channels that are multiplexed over an SSH connection and
communicates over the SSH Connection Protocol. This module provides a callback API that takes care of generic
channel aspects, such as flow control and close messages. It lets the callback functions take care of the service
(application) specific parts. Thisbehavior a so ensuresthat the channel process honorsthe principal of an OTP-process
so that it can be part of a supervisor tree. Thisis arequirement of channel processes implementing a subsystem that
will be added to the ssh applications supervisor tree.

Note:

When implementing an ssh subsystem, use - behavi our (ssh_daenon_channel) instead of -

behavi our (ssh_channel). The reason is that the only relevant callback functions for subsystems are
init/1,handl e_ssh_mnsg/ 2, handl e_nmsg/ 2,andt er m nat e/ 2. So, the ssh_daenon_channel

behaviour isalimited version of thessh_channel behaviour.

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both:

bool ean() =

true | false

string() =
list of ASCII characters
timeout () =
infinity | integer() inmilliseconds

ssh_connection_ref () =

opaque() -as returned by ssh: connect / 3 or sent to an SSH channel process
ssh_channel _id() =

i nteger ()
ssh_data_type code() =

1 ("stderr") | 0 ("normal") are the valid values, see RFC 4254 Section 5.2

Exports

call(ChannelRef, Msg) ->
call(ChannelRef, Msg, Timeout) -> Reply | {error, Reason}
Types:

Channel Ref = pid()

As returned by ssh_channel:start_link/4

Msg = term)

22 | Ericsson AB. All Rights Reserved.: SSH

href
href

ssh_channel

Ti meout = tinmeout ()
Reply = term)
Reason = cl osed | tinmeout

Makes a synchronous call to the channel process by sending a message and waiting until areply arrives, or atime-
out occurs. The channel cals Module:handle call/3 to handle the message. If the channel process does not exist,
{error, closed} isreturned.

cast(ChannelRef, Msg) -> ok
Types:
Channel Ref = pid()
Asreturned by ssh_channel:start_link/4
Msg = term()
Sends an asynchronous message to the channel process and returns ok immediately, ignoring if the destination node
or channel process does not exist. The channel calls Module:handle_cast/2 to handle the message.

enter loop(State) ->
Types:

State = term))

asreturned by ssh_channel:init/1

Makes an existing process an ssh_channel process. Does not return, instead the calling process enters the
ssh_channel processreceiveloop andbecomeanssh_channel process. Theprocess must have been started
using one of the start functionsin proc_1 i b, seethe proc_lib(3) manual pagein st dl i b. The user is responsible
for any initialization of the process and must call ssh_channel:init/1.

init(Options) -> {ok, State} | {ok, State, Timeout} | {stop, Reason}
Types.

Options = [{Option, Value}]

State = term))

Ti meout = timeout ()

Reason = term()

The following options must be present:
{channel _cb, atom()}

The module that implements the channel behaviour.
{init_args(), list()}

Thelist of argumentsto thei ni t function of the callback module.
{cm connection_ref()}

Reference to the ssh connection as returned by ssh: connect/3
{channel _id, channel _id()}

Id of the ssh channel.

Ericsson AB. All Rights Reserved.: SSH | 23

ssh_channel

Note:

This function is normally not caled by the user. The user only needs to cal if the channel
process needs to be started with help of proc_|ib instead of caling ssh_channel : start/ 4 or
ssh_channel : start _|ink/ 4.

reply(Client, Reply) ->
Types:
dient = opaque()
Reply = term()
This function can be used by achannel to send areply to aclient that called cal | / [2, 3] when thereply cannot be
defined in the return value of Module:handle_call/3.

C i ent must be the Fr omargument provided to the callback function handl e_cal | / 3. Repl y is an arbitrary
term, which is given back to the client as the return value of ssh_channel:call/[2,3].

start(SshConnection, Channelld, ChannelCb, CbInitArgs) ->

start link(SshConnection, Channelld, ChannelCb, CbInitArgs) -> {ok,
ChannelRef} | {error, Reason}

Types.
SshConnecti on = ssh_connection_ref()
Channel Id = ssh_channel _id()
Asreturned by ssh_connection:session_channel/[2,4].
Channel Cb = aton()
Name of the module implementing the service-specific parts of the channel.
ColnitArgs = [term)]
Argument list for thei ni t function in the callback module.
Channel Ref = pid()

Startsaprocessthat handlesan SSH channel. It iscalled internally, by the ssh daemon, or explicitly by thessh client
implementations. The behavior setsthet rap_exi t flagtot r ue.

CALLBACK TIME-OUTS

The time-out values that can be returned by the callback functions have the same semanticsasin agen_server. If the
time-out occurs, handle msg/2iscalled ashandl e_nsg(ti neout, State).

Exports

Module:code change(OldVsn, State, Extra) -> {ok, NewState}
Types:
A dvsn = tern()

In the case of an upgrade, A dVsn isVsn, and in the case of adowngrade, d dVsn is{ down, Vsn}.Vsn
is defined by the vsn attribute(s) of the old version of the callback module Modul e. If no such attribute is
defined, the version is the checksum of the BEAM file.

State = term))
Internal state of the channel.

24 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel

Extra = term()
Passed "as-is' from the { advanced, Ext r a} part of the update instruction.

Converts process state when code is changed.

This function is called by a client-side channel when it is to update its interna state during a
release upgrade or downgrade, that is, when the instruction {updat e, Modul e, Change, ...}, where
Change={ advanced, Extra}, isgivenintheappup file. For more information, refer to Section 9.11.6 Release
Handling Instructions in the System Documentation.

Note:

Soft upgrade according to the OTP release concept isnot straight forward for the server side, as subsystem channel
processes are spawned by the ssh application and hence added to its supervisor tree. The subsystem channels
can be upgraded when upgrading the user application, if the callback functions can handle two versions of the
state, but this function cannot be used in the normal way.

Module:init(Args) -> {ok, State} | {ok, State, timeout()} | {stop, Reason}
Types:

Args = term()

Last argumenttossh_channel : start _|i nk/ 4.

State = term))

Reason = term)

Makes necessary initializations and returns theinitial channel stateif the initializations succeed.
For more detailed information on time-outs, see Section CALLBACK TIME-OUTS.

Module:handle call(Msg, From, State) -> Result
Types:
Msg = term)
From = opaque()
Isto be used as argument to ssh_channel:reply/2
State = term))
Result = {reply, Reply, NewState} | {reply, Reply, NewState, tineout()}
| {noreply, NewState} | {noreply , NewState, tineout()} | {stop, Reason,
Reply, NewState} | {stop, Reason, NewStat e}

Reply = term)
Will be the return value of ssh_channel:call/[2,3]
NewState = term)
Reason = term()
Handles messages sent by calling ssh_channel:call/[2,3]

For more detailed information on time-outs,, see Section CALLBACK TIME-OUTS.
Module:handle cast(Msg, State) -> Result

Types:
Meg = term)

Ericsson AB. All Rights Reserved.: SSH | 25

ssh_channel

State = term))

Result = {noreply, NewState} | {noreply, NewState, tineout()} | {stop,
Reason, NewsSt at e}

NewState = term()
Reason = term()
Handles messages sent by calling ssh_channel : cast/ 2.

For more detailed information on time-outs, see Section CALLBACK TIME-OUTS.

Module:handle msg(Msg, State) -> {ok, State} | {stop, Channelld, State}
Types.

Msg = tineout | tern()

Channel Id = ssh_channel _id()

State = term()

Handles other messages than SSH Connection Protocol, call, or cast messages sent to the channel.
Possible Erlang 'EXIT' messagesisto be handled by thisfunction and all channels are to handl e the foll owing message.
{ssh_channel _up, ssh_channel _id(), ssh_connection_ref()}

This is the first message that the channel receives. It is sent just before the ssh_channel:init/1 function returns
successfully. Thisis especially useful if the server wants to send a message to the client without first receiving
a message from it. If the message is not useful for your particular scenario, ignore it by immediately returning
{ok, State}.

Module:handle ssh msg(Msg, State) -> {ok, State} | {stop, Channelld, State}
Types:

Msg = ssh_connection: event ()

Channel 1d = ssh_channel _i d()

State = term)

Handles SSH Connection Protocol messages that may need service-specific attention. For details, see
ssh_connection: event().

The following message is taken care of by thessh_channel behavior.
{cl osed, ssh_channel _id()}

The channel behavior sends a close message to the other side, if such a message has not already been sent. Then
it terminates the channel with reason nor mal .

Module:terminate(Reason, State) ->
Types:
Reason = term()
State = term)
This function is called by a channel process when it is about to terminate. Before this function is called,

ssh_connection:close/2 iscalled, if it has not been called earlier. Thisfunction does any necessary cleaning up. When
it returns, the channel process terminates with reason Reason. The return value isignored.

26 | Ericsson AB. All Rights Reserved.: SSH

ssh_connection

ssh_connection

Erlang module

The SSH Connection Protocol is used by clients and servers, that is, SSH channels, to communicate over the SSH
connection. The API functions in this module send SSH Connection Protocol events, which are received as messages
by the remote channel. If the receiving channel is an Erlang process, the messages have the format { ssh_cm

ssh_connection_ref (), ssh_event nsg()}.Ifthessh channel behaviorisused toimplement the channel
process, these messages are handled by handle_ssh_msg/2.

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both:

bool ean() =

true | false
string() =

list of ASCII characters
tinmeout () =

infinity | integer() inmilliseconds
ssh_connection_ref () =

opaque() -asreturned by ssh: connect / 3 or sent to an SSH channel processes
ssh_channel _id() =

i nteger()
ssh_data_type code() =

1 ("stderr) | 0 ("normal") are valid values, see RFC 4254 Section 5.2.
ssh_request _status() =

success | failure
event () =

{ssh_cm ssh _connection_ ref(), ssh_event nsg()}
ssh_event _nsg() =

data_events() | status_events() | term nal _events()
reason() =

timeout | cl osed

data_events()
{data, ssh_channel _id(), ssh _data type code(), Data :: binary()}

Data has arrived on the channel. This event is sent asaresult of calling ssh_connection: send/[3,4,5].
{eof , ssh_channel _id()}

Indicates that the other side sends no more data. This event is sent as a result of calling
ssh_connection:send_eof/2.

Ericsson AB. All Rights Reserved.: SSH | 27

href

ssh_connection

status_events()
{signal, ssh_channel _id(), ssh_signal ()}

A signal can be delivered to the remote process/service using the following message. Some systems do not
support signals, in which case they areto ignore this message. Thereis currently no function to generate this
event as the signals referred to are on OS-level and not something generated by an Erlang program.

{exit_signal, ssh_channel _id(), ExitSignal :: string(),
ErrorMsg ::string(), LanguageString :: string()}

A remote execution can terminate violently because of a signal. Then this message can be received. For
details on valid string values, see RFC 4254 Section 6.10, which shows a special case of these signals.

{exit_status, ssh channel id(), ExitStatus :: integer()}

When the command running at the other end terminates, the following message can be sent to return the exit
status of the command. A zero exi t _st at us usually means that the command terminated successfully.
Thisevent is sent asaresult of calling ssh_connection:exit_status/3.

{cl osed, ssh_channel _id()}

Thisevent is sent as aresult of calling ssh_connection: close/2. Both the handling of this event and sending
it are taken care of by the ssh_channel behavior.

terminal_events()

Channels implementing a shell and command execution on the server side are to handle the following messages
that can be sent by client- channel processes.

Events that include a Want Repl y expect the event handling process to call ssh_connection:reply request/4
with the boolean value of Want Repl y asthe second argument.

{env, ssh_channel _id(), WantReply :: boolean(), Var ::string(), Value ::
string()}

Environment variables can be passed to the shell/command to be started later. This event is sent as a result
of calling ssh_connection: setenv/5.

{pty, ssh_channel _id(), WantReply :: boolean(), {Termnal :: string(),
Charwdth :: integer(), RowHeight :: integer(), PixelWdth :: integer(),
Pi xel Height :: integer(), Term nal Mbdes :: [{Opcode :: atom() | integer(),
Value :: integer()}]}}

A pseudo-terminal has been requested for the session. Ter mi nal isthe value of the TERM environment
variablevalue, that is, vt 100. Zero dimension parameters must be ignored. The character/row dimensions
override the pixel dimensions (when non-zero). Pixel dimensions refer to the drawabl e area of the window.
Opcode in the Ter ni nal Mbdes list is the mnemonic name, represented as a lowercase Erlang atom,
defined in RFC 4254, Section 8. It can also be an Opcode if the mnemonic nameis not listed in the RFC.
Example: OP code: 53, mmenpni ¢ nane ECHO erl ang atom echo. Thiseventissent as
aresult of calling ssh_connection: ptty_alloc/4.

{shell, WantReply :: boolean()}

This message requests that the user default shell is started at the other end. This event is sent as a result of
caling ssh_connection:shell/2.

{wi ndow_change, ssh_channel _id(), CharWdth() :: integer(), RowHei ght
integer(), PixWdth :: integer(), PixHeight :: integer()}

When the window (terminal) size changes on the client side, it can send a message to the server side to
inform it of the new dimensions. No API function generates this event.

28 | Ericsson AB. All Rights Reserved.: SSH

href
href

ssh_connection

{exec, ssh_channel _id(), WantReply :: boolean(), Cnd :: string()}

This message requests that the server starts execution of the given command. This event is sent as a result
of calling ssh_connection:exec/4 .

Exports

adjust window(ConnectionRef, ChannelId, NumOfBytes) -> ok
Types:
Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _i d()
NumOf Byt es = integer()
Adjusts the SSH flow control window. Thisisto be done by both the client- and server-side channel processes.

Note:

Channels implemented with the ssh_channel behavior do not normally need to call this function as flow control
is handled by the behavior. The behavior adjusts the window every time the callback handle ssh msg/2 returns
after processing channel data.

close(ConnectionRef, Channelld) -> ok
Types:
Connecti onRef = ssh_connection_ref()
Channel 1d = ssh_channel _i d()

A server- or client-channel process can choose to close their session by sending a close event.

Note:

This function is called by the ssh_channel behavior when the channel is terminated, see ssh_channel(3).
Thus, channels implemented with the behavior are not to call this function explicitly.

exec(ConnectionRef, Channelld, Command, TimeOut) -> ssh request status() |
{error, reason()}

Types:
Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _i d()
Conmand string()
Ti meout ti meout ()

Isto be called by aclient-channel process to request that the server starts executing the given command. Theresult is
several messages according to the following pattern. The last messageisachannel close message, astheexec request
is a one-time execution that closes the channel when it is done.

Ericsson AB. All Rights Reserved.: SSH | 29

ssh_connection

N x {ssh_cm ssh_connection_ref(), {data, ssh_channel _id(),
ssh_data_type_code(), Data :: binary()}}

The result of executing the command can be only one line or thousands of lines depending on the command.
0 or 1 x {ssh_cm ssh _connection_ref(), {eof, ssh_channel _id()}}
Indicates that no more datais to be sent.

0 or 1 x {ssh_cm ssh_connection_ref(), {exit_signal, ssh_channel _id(),
ExitSignal :: string(), ErrorMsg :: string(), LanguageString :: string()}}

Not all systems send signals. For details on valid string values, see RFC 4254, Section 6.10

0 or 1 x {ssh_cm ssh _connection_ref(), {exit_status, ssh _channel _id(),
ExitStatus :: integer()}}

It is recommended by the SSH Connection Protocol to send this message, but that is not always the case.
1 x {ssh_cm ssh_connection_ref(), {closed, ssh_channel _id()}}
Indicates that thessh_channel started for the execution of the command has now been shut down.

exit status(ConnectionRef, Channelld, Status) -> ok
Types:

Connecti onRef = ssh_connection_ref()

Channel Id = ssh_channel _i d()

Status = integer()

Isto be called by a server-channel process to send the exit status of acommand to the client.

ptty alloc(ConnectionRef, Channelld, Options) ->

ptty alloc(ConnectionRef, Channelld, Options, Timeout) -> >
ssh request status() | {error, reason()}

Types.
Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _id()
Options = proplists:proplist()
Sends an SSH Connection Protocol pt y_r eq, to alocate a pseudo-terminal. Isto be called by an SSH client process.
Options:
{term, string()}
Defaults to os:getenv(" TERM") or vt100 if it is undefined.
{width, integer()}
Defaultsto 80 if pi xel _wi dt h isnot defined.
{height, integer()}
Defaultsto 24 if pi xel _hei ght isnot defined.
{ pixel_width, integer()}
Isdisregarded if wi dt h isdefined.
{pixel_height, integer()}
Isdisregarded if hei ght isdefined.

30 | Ericsson AB. All Rights Reserved.: SSH

ssh_connection

{pty_opts, [{ posix_atom(), integer()} 1}
Option can be an empty list. Otherwise, see possible POS X namesin Section 8in RFC 4254.

reply request(ConnectionRef, WantReply, Status, Channelld) -> ok
Types:
Connecti onRef = ssh_connection_ref()
Want Reply = bool ean()
Status = ssh_request _status()
Channel Id = ssh_channel _i d()
Sends status replies to requests where the requester has stated that it wants a status report, that is, Want Reply =

true. If Vant Repl y isf al se, calling this function becomes a "noop". Is to be called while handling an SSH
Connection Protocol message containing a\Want Repl y boolean value.

send(ConnectionRef, Channelld, Data) ->
send(ConnectionRef, Channelld, Data, Timeout) ->
send(ConnectionRef, Channelld, Type, Data) ->

send(ConnectionRef, Channelld, Type, Data, TimeOut) -> ok | {error, timeout}
| {error, closed}

Types:
Connecti onRef = ssh_connection_ref()
Channel I1d = ssh_channel _i d()
Data = binary()
Type = ssh_data_type_code()
Ti meout = timeout ()
Isto be called by client- and server-channel processes to send data to each other.

send eof(ConnectionRef, Channelld) -> ok | {error, closed}
Types:

Connecti onRef = ssh_connection_ref()

Channel 1d = ssh_channel _i d()

Sends EOF on channel Channel | d.

session channel(ConnectionRef, Timeout) ->

session channel(ConnectionRef, InitialWindowSize, MaxPacketSize, Timeout) ->
{ok, ssh channel id()} | {error, reason()}

Types:
Connecti onRef = ssh_connection_ref()
Initial WndowSi ze = integer()
MaxPacket Si ze = integer()
Ti meout = timeout ()
Reason = term)

Opens a channel for an SSH session. The channel id returned from this function is the id used as input to the other
functionsin this module.

Ericsson AB. All Rights Reserved.: SSH | 31

href

ssh_connection

setenv(ConnectionRef, Channelld, Var, Value, TimeOut) -> ssh request status()
| {error, reason()}

Types:
Connecti onRef = ssh_connection_ref()
Channel I1d = ssh_channel _i d()
Var = string()
Val ue = string()
Ti meout = timeout ()

Environment variables can be passed before starting the shell/command. Is to be called by aclient channel processes.

shell(ConnectionRef, Channelld) -> ssh request status() | {error, closed}
Types:

Connecti onRef = ssh_connection_ref()

Channel 1d = ssh_channel _i d()

Isto be called by a client channel process to request that the user default shell (typically defined in /etc/passwd in
Unix systems) is executed at the server end.

subsystem(ConnectionRef, Channelld, Subsystem, Timeout) ->
ssh request status() | {error, reason()}

Types.
Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _id()
Subsystem = string()
Ti meout = timeout ()

Isto be called by a client-channel process for requesting to execute a predefined subsystem on the server.

32 | Ericsson AB. All Rights Reserved.: SSH

ssh_client_key_api

ssh_client key api

Erlang module

Behavior describing the API for public key handling of an SSH client. By implementing the callbacks defined in this
behavior, the public key handling of an SSH client can be customized. By default the ssh application implementsthis
behavior with help of the standard OpenSSH files, see the ssh(6) application manual.

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both. For more details on public key data types, refer to Section 2 Public Key Records in the public_key
user's guide:
bool ean() =
true | false
string() =
[byte()]
public_key() =
RSAPubl i cKey' {}| {integer(), # Dss-Parns'{}}| term)
private_key() =
RSAPrivateKey' {} | # DSAPrivateKey' {} | term()
public_key_ algorithm() =
"ssh-rsa'| 'ssh-dss' | atom()

Exports

Module:add host key(HostNames, Key, ConnectOptions) -> ok | {error, Reason}
Types.

Host Names = string()

Description of the host that ownsthe Publ i cKey.

Key = public_key()

Normally an RSA or DSA public key, but handling of other public keys can be added.

Connect Options = proplists:proplist()

Options provided to ssh: connect/[3,4]

Reason = term().

Adds a host key to the set of trusted host keys.

Module:is host key(Key, Host, Algorithm, ConnectOptions) -> Result
Types:

Key = public_key()

Normally an RSA or DSA public key, but handling of other public keys can be added.

Host = string()

Description of the host.

Ericsson AB. All Rights Reserved.: SSH | 33

ssh_client_key_api

Al gorithm = public_key_ algorithm)

Host key algorithm. Isto support* ssh-rsa'| ' ssh-dss', but more agorithms can be handled.
Connect Options = proplists:proplist()

Options provided to ssh:connect/[3,4].

Result = bool ean()

Checks if ahost key istrusted.

Module:user key(Algorithm, ConnectOptions) -> {ok, PrivateKey} | {error,
Reason}

Types:
Al gorithm = public_key_ algorithm)
Host key algorithm. Isto support* ssh-rsa’'| ' ssh-dss' but more algorithms can be handled.

Connect Options = proplists:proplist()
Options provided to ssh: connect/[3,4]

PrivateKey = private_key()

Private key of the user matching the Al gori t hm
Reason = term()

Fetches the users public key matching the Al gori t hm

Note:
The private key contains the public key.

34 | Ericsson AB. All Rights Reserved.: SSH

ssh_server_key api

ssh_server _key api

Erlang module

Behaviour describing the API for public key handling of an SSH server. By implementing the callbacks defined in this
behavior, the public key handling of an SSH server can be customized. By default the SSH application implements
this behavior with help of the standard OpenSSH files, see the ssh(6) application manual .

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both. For more details on public key data types, refer to Section 2 Public Key Records in the public_key
user's guide.
bool ean() =
true | false
string() =
[byte()]
public_key() =
RSAPubl i cKey' {}| {integer(), # Dss-Parns'{}}| term)
private_key() =
RSAPrivateKey' {} | # DSAPrivateKey' {} | term()
public_key_ algorithm() =
"ssh-rsa'| 'ssh-dss' | atom()

Exports

Module:host key(Algorithm, DaemonOptions) -> {ok, Key} | {error, Reason}
Types.

Al gorithm = public_key_al gorithm)

Host key algorithm. Isto support* ssh-rsa' | ' ssh-dss', but more algorithms can be handled.

DaenonOptions = proplists:proplist()

Options provided to ssh:daemon/[2,3].

Key = private_key()

Private key of the host matching the Al gori t hm

Reason = term()

Fetches the private key of the host.

Module:is auth key(Key, User, DaemonOptions) -> Result
Types:
Key = public_key()
Normally an RSA or DSA public key, but handling of other public keys can be added
User = string()
User owning the public key.

Ericsson AB. All Rights Reserved.: SSH | 35

ssh_server_key api

DaenonOpti ons = proplists:proplist()
Options provided to ssh:daemon/[2,3].
Result = bool ean()

Checksif the user key is authorized.

36 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

ssh_sftp

Erlang module

Thismoduleimplementsan SSH FTP (SFTP) client. SFTPisasecure, encrypted filetransfer serviceavailablefor SSH.

DATA TYPES

Type definitions that are used more than once in this module, or abstractions to indicate the intended use of the data
type, or both:

ssh_connection_ref () =
opaque() - asreturned by ssh: connect/ 3
ti meout ()

=infinity | integer() in mlliseconds. Default infinity.

Time-outs

If the request functions for the SFTP channel return { error, ti meout}, it does not guarantee that the request
never reached the server and was not performed. It only means that no answer was received from the server within
the expected time.

Exports

apread(ChannelPid, Handle, Position, Len) -> {async, N} | {error, Error}
The apr ead function reads from a specified position, combining the posi t i on and ar ead functions.
ssh_sftp:apread/4

apwrite(ChannelPid, Handle, Position, Data) -> ok | {error, Reason}
Types:

Channel Pid = pid()

Handle = term)

Position = integer()

Len = integer()

Data = binary()

Ti meout = tinmeout ()

Reason = term()

apwr i t e writes on a specified position, combining the posi t i on and awr i t e operations.
ssh_sftp:awrite/3

aread(ChannelPid, Handle, Len) -> {async, N} | {error, Error}
Types.

Channel Pid = pid()

Handl e = term)

Position = integer()

Len = integer()

Ericsson AB. All Rights Reserved.: SSH | 37

ssh_sftp

N=term)

Reason = term()
Reads from an open file, without waiting for the result. If the handle is valid, the function returns { async, N},
where Nisaterm guaranteed to be unique between calls of ar ead. The actual datais sent as a message to the calling

process. This message hastheform {async_reply, N, Result},whereResult istheresult from the read,
either { ok, Data},eof ,or{error, Error}.

awrite(ChannelPid, Handle, Data) -> ok | {error, Reason}
Types.
Channel Pid = pid()
Handl e = term()
Position = integer()
Len = integer()
Data = binary()
Ti meout = tinmeout ()
Reason = term()
Writes to an open file, without waiting for the result. If the handleisvalid, the function returns{ async, N}, where
Nisaterm guaranteed to be unique between callsof awr i t e. Theresult of thewr i t e operation is sent as a message

to the calling process. This message hasthe form { async_reply, N, Result}, where Resul t isthe result
from the write, either ok, or{error, Error}.

close(ChannelPid, Handle) ->
close(ChannelPid, Handle, Timeout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

Handle = term()

Ti meout = timeout ()

Reason = term()

Closes ahandle to an open file or directory on the server.

delete(ChannelPid, Name) ->
delete(ChannelPid, Name, Timeout) -> ok | {error, Reason}
Types.

Channel Pid = pid()

Name = string()

Ti meout = timeout ()

Reason = term()

Deletes the file specified by Nane, likefile:delete/1

del dir(ChannelPid, Name) ->
del dir(ChannelPid, Name, Timeout) -> ok | {error, Reason}
Types.

Channel Pid = pid()

Name = string()

38 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

Ti meout = tinmeout ()
Reason = term()

Deletes adirectory specified by Nanme. The directory must be empty before it can be successfully deleted.

list dir(ChannelPid, Path) ->
list dir(ChannelPid, Path, Timeout) -> {ok, Filenames} | {error, Reason}

Types:

Channel Pid = pid()

Pat h

= string()

Fil enames = [Fil enane]
Fi l ename = string()

Ti mreout = tinmeout ()
Reason = term()

Lists the given directory on the server, returning the filenames as alist of strings.

make dir(ChannelPid, Name) ->
make dir(ChannelPid, Name, Timeout) -> ok | {error, Reason}

Types:

Channel Pid = pid()

Nane

= string()

Ti meout = timeout ()
Reason = term()

Creates adirectory specified by Nanme. Name must be afull path to anew directory. The directory can only be created
in an existing directory.

make symlink(ChannelPid, Name, Target) ->
make symlink(ChannelPid, Name, Target, Timeout) -> ok | {error, Reason}

Types.

Channel Pid = pid()

Name

Tar get

= string()
string()

Reason = term()

Creates asymbolic link pointing to Tar get with the name Nane, like file:make _symlink/2

open(ChannelPid, File, Mode) ->
open(ChannelPid, File, Mode, Timeout) -> {ok, Handle} | {error, Reason}

Types.

Channel Pid = pid()

File
Mode

= string()
= [Modef | ag]

Modeflag = read | wite | creat | trunc | append | binary
Ti meout = timeout ()
Handl e = term)

Ericsson AB. All Rights Reserved.: SSH | 39

ssh_sftp

Reason = term()

Opens afile on the server and returns a handle, which can be used for reading or writing.

opendir(ChannelPid, Path) ->
opendir(ChannelPid, Path, Timeout) -> {ok, Handle} | {error, Reason}
Types.

Channel Pid = pid()

Path = string()

Ti meout = timeout ()

Reason = term()

Opens a handle to a directory on the server. The handle can be used for reading directory contents.

open_tar(ChannelPid, Path, Mode) ->
open_tar(ChannelPid, Path, Mode, Timeout) -> {ok, Handle} | {error, Reason}
Types.
Channel Pid = pid()
Pat h string()
Mode [read] | [wite] | [read, EncryptOpt] | [wite, Decrypt Opt]
Encrypt Opt = {crypto, {InitFun, Encrypt Fun, d oseFun}}
Decrypt Opt = {crypto, {InitFun, Decrypt Fun}}

InitFun = (fun() -> {ok,CryptoState}) | (fun() ->
{ok, Crypt oSt at e, ChunkSi ze})

CryptoState = any()
ChunkSi ze = undefined | pos_integer()
Encrypt Fun = (fun(Plai nBin, CryptoState) -> EncryptResult)

Encrypt Result = {ok, EncryptedBi n, CryptoState} |
{ ok, Encrypt edBi n, Crypt oSt at e, ChunkSi ze}

Pl ai nBin = binary()
Encrypt edBi n = bi nary()
Decrypt Fun = (fun(EncryptedBin, CryptoState) -> Decrypt Result)

Decrypt Result = {ok, Pl ai nBi n, Crypt oSt ate} |
{ ok, Pl ai nBi n, Crypt oSt at e, ChunkSi ze}

G oseFun = (fun(PlainBin, CyptoState) -> {ok, EncryptedBin})
Ti meout = tinmeout ()
Reason = term()

Opensahandleto atar file onthe server, associated with Channel Pi d. Thehandle can be used for remotetar creation
and extraction, as defined by the erl_tar:init/3 function.

For code exampel see Section SFTP Client with TAR Compression and Encryption in the ssh Users Guide.

Thecr ypt o mode option is applied to the generated stream of bytes prior to sending them to the SFTP server. This
isintended for encryption but can be used for other purposes.

Thel ni t Fun isapplied once prior to any other cr ypt o operation. Thereturned Cr ypt oSt at e isthenfolded into
repeated applications of the Encr ypt Fun or Decr ypt Fun. The binary returned from those funs are sent further
to the remote SFTP server. Finally, if doing encryption, the C oseFun is applied to the last piece of data. The
C oseFun isresponsible for padding (if needed) and encryption of that last piece.

40 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

The ChunkSi ze defines the size of the Pl ai nBi ns that EncodeFun is applied to. If the ChunkSi ze is
undef i ned, the size of the Pl ai nBi ns varies, because this is intended for stream crypto, whereas a fixed
ChunksSi ze isintended for block crypto. ChunkSi zes can be changed in the return from the Encr ypt Fun or
Decr ypt Fun. The value can be changed between pos_i nt eger () and undef i ned.

position(ChannelPid, Handle, Location) ->

position(ChannelPid, Handle, Location, Timeout) -> {ok, NewPosition | {error,
Error}

Types:
Channel Pid = pid()
Handl e = term)

Location = Ofset | {bof, Ofset} | {cur, Ofset} | {eof, Ofset} | bof |
cur | eof

O fset = integer()

Ti meout = timeout ()
NewPosi tion = integer()
Reason = term)

Sets the file position of the file referenced by Handl e. Returns { ok, NewPosi ti on} (as an absolute offset) if
successful, otherwise{ error, Reason}.Locat i on isone of thefollowing:

O fset
Thesameas{bof, O fset}.
{bof, O fset}
Absolute offset.
{cur, Ofset}
Offset from the current position.
{eof, O fset}
Offset from the end of file.
bof | cur | eof
The same as eariler with Of f set O, thatis, { bof, 0} | {cur, 0} | {eof, O}.

pread(ChannelPid, Handle, Position, Len) ->

pread(ChannelPid, Handle, Position, Len, Timeout) -> {ok, Data} | eof |
{error, Error}

Types:
Channel Pid = pid()
Handle = term)
Position = integer()
Len = integer()
Ti meout = timeout ()
Data = string() | binary()
Reason = term()

The pr ead function reads from a specified position, combining the posi t i on and r ead functions.

Ericsson AB. All Rights Reserved.: SSH | 41

ssh_sftp

ssh_sftp:read/4

pwrite(ChannelPid, Handle, Position, Data) -> ok
pwrite(ChannelPid, Handle, Position, Data, Timeout) -> ok | {error, Error}
Types:

Channel Pid = pid()

Handl e = term)

Position = integer()

Data = iolist()

Ti meout = timeout ()

Reason = term()

The pr ead function writes to a specified position, combining the posi t i on andwr i t e functions.
ssh_sftp:write/3

read(ChannelPid, Handle, Len) ->
read (ChannelPid, Handle, Len, Timeout) -> {ok, Data} | eof | {error, Error}
Types.

Channel Pid = pid()

Handle = term)

Position = integer()

Len = integer()

Ti meout = tinmeout ()

Data = string() | binary()

Reason = term()

Reads Len bytes from thefile referenced by Handl e. Returns{ ok, Dat a},eof ,or{error, Reason}.Ifthe
fileis opened with bi nar y, Dat a isabinary, otherwiseit isastring.

If thefileisread past eof , only the remaining bytes are read and returned. If no bytes are read, eof isreturned.

read file(ChannelPid, File) ->
read file(ChannelPid, File, Timeout) -> {ok, Data} | {error, Reason}
Types:

Channel Pid = pid()

File = string()

Data = binary()

Ti meout = timeout ()

Reason = term()

Reads afile from the server, and returns the datain abinary, likefile:rread file/1

read file info(ChannelPid, Name) ->
read file info(ChannelPid, Name, Timeout) -> {ok, FileInfo} | {error, Reason}
Types.

Channel Pid = pid()

Name = string()

42 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

Handl e = term)
Ti meout = timeout ()
Filelnfo = record()
Reason = term()

Returnsafi | e_i nf o record from the file specified by Nane or Handl e, likefile:read file info/2

read link(ChannelPid, Name) ->
read link(ChannelPid, Name, Timeout) -> {ok, Target} | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Target = string()

Reason term))

Reads the link target from the symbolic link specified by nane, likefile:read link/1

read link info(ChannelPid, Name) -> {ok, FileInfo} | {error, Reason}

read link info(ChannelPid, Name, Timeout) -> {ok, FileInfo} | {error, Reason}

Types:
Channel Pid = pid()
Name = string()
Handle = term)
Ti meout = timeout ()
Filelnfo = record()
Reason = term()

Returnsaf i | e_i nf o record from the symbolic link specified by Nane or Handl e, likefile:read_link_info/2

rename(ChannelPid, OldName, NewName) ->
rename (ChannelPid, OldName, NewName, Timeout) -> ok | {error, Reason}
Types.

Channel Pid = pid()

A dNane = string()

NewNanme string()

Ti meout timeout ()

Reason = term()

Renames afile named O dNane and givesit the name NewNane, like file:rename/2

start _channel(ConnectionRef) ->
start channel(ConnectionRef, Options) ->
start_channel(Host, Options) ->

start channel(Host, Port, Options) -> {ok, Pid} | {ok, Pid, ConnectionRef} |
{error, Reason}

Types.
Host = string()

Ericsson AB. All Rights Reserved.: SSH | 43

ssh_sftp

Connecti onRef = ssh_connection_ref()
Port = integer()

Options = [{Option, Value}]

Reason = term()

If no connection reference is provided, a connection is set up, and the new connection is returned. An SSH channel
process is started to handle the communication with the SFTP server. The returned pi d for this processisto be used
asinput to all other API functionsin this module.

Options:
{tinmeout, timeout()}

Thetime-out is passed to thessh_channel start function, and defaultstoi nfinity.
{sftp_vsn, integer()}

Desired SFTP protocol version. The actua version is the minimum of the desired version and the maximum
supported versions by the SFTP server.

All other options are directly passed to ssh:connect/3 or ignored if a connection is already provided.

stop_channel(ChannelPid) -> ok
Types:
Channel Pid = pid()
Stops an SFTP channel. Does not close the SSH connection. Use ssh:close/1 to closeit.

write(ChannelPid, Handle, Data) ->
write(ChannelPid, Handle, Data, Timeout) -> ok | {error, Error}
Types:

Channel Pid = pid()

Handl e = term)

Position = integer()

Data = iolist()

Ti meout = tinmeout ()

Reason = term()

Writes dat a to the file referenced by Handl e. Thefile is to be opened withwr i t e or append flag. Returns ok
if successful or { error, Reason} otherwise.

Typical error reasons:
ebadf

File is not opened for writing.
enospc

No space is left on the device.

write file(ChannelPid, File, Iolist) ->
write file(ChannelPid, File, Iolist, Timeout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

File = string()

44 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

lolist =iolist()

Ti meout = timeout ()

Reason = term()

Writesafileto the server, likefilexwrite _file/2 Thefileiscreated if it does not exist. Thefileis overwritteniif it exists.

write file info(ChannelPid, Name, Info) ->

write file info(ChannelPid, Name, Info, Timeout) -> ok | {error, Reason}

Types.

Channel Pid = pid()

Name = string()
Info = record()

Ti mreout = tinmeout ()

Reason = term()

Writesfile information fromaf i | e_i nf o record to the file specified by Nane, like file:write file info/[2,3]

Ericsson AB. All Rights Reserved.: SSH | 45

ssh_sftpd

ssh_sftpd

Erlang module

Specifies a channel process to handle an SFTP subsystem.

DATA TYPES
subsystem spec() =
{subsystem nane(), {channel callback(), channel _init_args()}}
subsystem nanme() =
"sftp"
channel _cal | back() =

at om() - Name of the Erlang module implementing the subsystem using thessh_channel behavior, seethe
ssh_channel (3) manual page.

channel _init_args() =

I'ist() - Theonegiven asargument to function subsyst em spec/ 1.

Exports

subsystem spec(Options) -> subsystem spec()
Types:

Options = [{Option, Val ue}]
Isto be used together with ssh: daenon/ [1, 2, 3]
Options:
{cwd, String}

Setstheinitial current working directory for the server.
{file_handler, CallbackMdul e}

Determines which module to call for accessing the file server. The default valueisssh_sft pd_fi |l e, which
uses the file and filelib APIs to access the standard OTP file server. This option can be used to plug in other
file servers.

{max_files, Integer}

The default value is 0, which means that there is no upper limit. If supplied, the number of filenames returned to
the SFTP client per READDI Rreguest is limited to at most the given value.

{root, String}

Setsthe SFTProot directory. Then the user cannot see any files above thisroot. If, for example, theroot directory
is set to/ t np, then the user sees this directory as/ . If the user then writescd / et ¢, the user movesto /
tmp/ et c.

{sftpd_vsn, integer()}
Setsthe SFTP version to use. Defaultsto 5. Version 6 is under development and limited.

46 | Ericsson AB. All Rights Reserved.: SSH

	SSH
	SSH User's Guide
	Introduction
	Scope and Purpose
	Prerequisites
	SSH Protocol Overview
	Transport Protocol
	Authentication Protocol
	Connection Protocol
	Channels

	Where to Find More Information

	Getting Started
	General Information
	Using the Erlang ssh Terminal Client
	Running an Erlang ssh Daemon
	One-Time Execution
	SFTP Server
	SFTP Client
	SFTP Client with TAR Compression and Encryption
	Creating a Subsystem

	Reference Manual
	SSH
	ssh
	close/1
	connect/3
	connect/4
	connection_info/2
	daemon/1
	daemon/2
	daemon/3
	default_algorithms/0
	shell/1
	shell/2
	shell/3
	start/0
	start/1
	stop/0
	stop_daemon/1
	stop_daemon/2
	stop_listener/1
	stop_listener/2

	ssh_channel
	call/2
	call/3
	cast/2
	enter_loop/1
	init/1
	reply/2
	start/4
	start_link/4
	Module:code_change/3
	Module:init/1
	Module:handle_call/3
	Module:handle_cast/2
	Module:handle_msg/2
	Module:handle_ssh_msg/2
	Module:terminate/2

	ssh_connection
	adjust_window/3
	close/2
	exec/4
	exit_status/3
	ptty_alloc/3
	ptty_alloc/4
	reply_request/4
	send/3
	send/4
	send/4
	send/5
	send_eof/2
	session_channel/2
	session_channel/4
	setenv/5
	shell/2
	subsystem/4

	ssh_client_key_api
	Module:add_host_key/3
	Module:is_host_key/4
	Module:user_key/2

	ssh_server_key_api
	Module:host_key/2
	Module:is_auth_key/3

	ssh_sftp
	apread/4
	apwrite/4
	aread/3
	awrite/3
	close/2
	close/3
	delete/2
	delete/3
	del_dir/2
	del_dir/3
	list_dir/2
	list_dir/3
	make_dir/2
	make_dir/3
	make_symlink/3
	make_symlink/4
	open/3
	open/4
	opendir/2
	opendir/3
	open_tar/3
	open_tar/4
	position/3
	position/4
	pread/4
	pread/5
	pwrite/4
	pwrite/5
	read/3
	read/4
	read_file/2
	read_file/3
	read_file_info/2
	read_file_info/3
	read_link/2
	read_link/3
	read_link_info/2
	read_link_info/3
	rename/3
	rename/4
	start_channel/1
	start_channel/2
	start_channel/2
	start_channel/3
	stop_channel/1
	write/3
	write/4
	write_file/3
	write_file/4
	write_file_info/3
	write_file_info/4

	ssh_sftpd
	subsystem_spec/1

